Initial Application of Machine Learning for Beam Parameter Optimization at the Hefei Light Source II

被引:0
|
作者
Yu, Yongbo [1 ]
Ni, Wangbiao [1 ]
Liu, Gongfa [1 ]
Xu, Wei [1 ]
Li, Chuan [1 ]
Li, Weiming [1 ]
Xuan, Ke [1 ]
机构
[1] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
来源
IPAC23 PROCEEDINGS | 2024年 / 2687卷
关键词
D O I
10.1088/1742-6596/2687/7/072002
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Machine learning (ML) has become a valuable tool in particle accelerator control, with growing potential for beam parameter correction. In this study, we present preliminary ML applications at HLS-II, using Lasso regression for online tune correction and a neural network (NN) for beta function simulation correction. Both models were trained with supervised learning on measured beam parameter data, while an improved genetic algorithm optimized the NN structure. Our results show that the ML-based approach achieves competitive correction quality with fewer steps, making it a promising method for future particle accelerator applications and other fields.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Research on tune feedback of the Hefei Light Source II based on machine learning
    Yong-Bo Yu
    Gong-Fa Liu
    Wei Xu
    Chuan Li
    Wei-Min Li
    Ke Xuan
    [J]. Nuclear Science and Techniques, 2022, 33
  • [2] Research on tune feedback of the Hefei Light Source II based on machine learning
    Yu, Yong-Bo
    Liu, Gong-Fa
    Xu, Wei
    Li, Chuan
    Li, Wei-Min
    Xuan, Ke
    [J]. NUCLEAR SCIENCE AND TECHNIQUES, 2022, 33 (03)
  • [3] Correction to: Research on tune feedback of the Hefei Light Source II based on machine learning
    Yong-Bo Yu
    Gong-Fa Liu
    Wei Xu
    Chuan Li
    Wei-Min Li
    Ke Xuan
    [J]. Nuclear Science and Techniques, 2022, 33
  • [4] Research on tune feedback of the Hefei Light Source Ⅱ based on machine learning
    Yong-Bo Yu
    Gong-Fa Liu
    Wei Xu
    Chuan Li
    Wei-Min Li
    Ke Xuan
    [J]. Nuclear Science and Techniques, 2022, (03) : 47 - 54
  • [5] Research on tune feedback of the Hefei Light Source II based on machine learning (vol 33, 28, 2022)
    Yu, Yong-Bo
    Liu, Gong-Fa
    Xu, Wei
    Li, Chuan
    Li, Wei-Min
    Xuan, Ke
    [J]. NUCLEAR SCIENCE AND TECHNIQUES, 2022, 33 (04)
  • [6] Neural network structure optimization for Hefei Light Source II β function correction
    Yu, Y. B.
    Ni, W. B.
    Xuan, K.
    Li, W. M.
    Xu, W.
    Li, C.
    Liu, G. F.
    [J]. JOURNAL OF INSTRUMENTATION, 2023, 18 (09)
  • [7] Application of Libera Photon in photon beam position measurement system at Hefei light source
    Gu, Li-Ming
    Sun, Bao-Gen
    Yang, Yong-Liang
    Lu, Ping
    Xiao, Yun-Yun
    Wang, Ji-Gang
    Tang, Lei-Lei
    [J]. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2012, 46 (12): : 1512 - 1516
  • [8] Experimental investigation of transverse quadrupolar beam oscillation in the Hefei Light Source-II storage ring
    Zhao, Yunkun
    Sun, Baogen
    Zhou, Tianyu
    Wang, Jigang
    Lu, Ping
    Wu, Fangfang
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1038
  • [9] Photon beam position monitor for Hefei light source undulator beamline
    Sun, Bao-Gen
    Gu, Li-Ming
    Ma, Tian-Ji
    Lu, Ping
    Wang, Ji-Gang
    Tang, Lei-Lei
    [J]. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2009, 43 (SUPPL. 1): : 172 - 176
  • [10] Beam soft ramping control of Hefei light source storage ring
    Liu, Gong-Fa
    Xie, Dong
    Li, Wei-Min
    Liu, Zu-Ping
    [J]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2004, 16 (08): : 1075 - 1077