3D auto-segmentation of biliary structure of living liver donors using magnetic resonance cholangiopancreatography for enhanced preoperative planning
被引:6
|
作者:
论文数: 引用数:
h-index:
机构:
Oh, Namkee
[1
]
Kim, Jae-Hun
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Samsung Med Ctr, Dept Radiol, Sch Med, Seoul, South KoreaSungkyunkwan Univ, Dept Surg, Sch Med, Seoul, South Korea
Kim, Jae-Hun
[2
]
论文数: 引用数:
h-index:
机构:
Rhu, Jinsoo
[1
,3
]
Jeong, Woo Kyoung
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Samsung Med Ctr, Dept Radiol, Sch Med, Seoul, South Korea
Sungkyunkwan Univ, Ctr Imaging Sci, Samsung Med Ctr, Dept Radiol,Sch Med, 81 Irwon Ro, Seoul 06351, South KoreaSungkyunkwan Univ, Dept Surg, Sch Med, Seoul, South Korea
Jeong, Woo Kyoung
[2
,4
]
论文数: 引用数:
h-index:
机构:
Choi, Gyu-Seong
[1
]
Kim, Jong Man
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Surg, Sch Med, Seoul, South KoreaSungkyunkwan Univ, Dept Surg, Sch Med, Seoul, South Korea
Kim, Jong Man
[1
]
Joh, Jae-Won
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Surg, Sch Med, Seoul, South KoreaSungkyunkwan Univ, Dept Surg, Sch Med, Seoul, South Korea
Joh, Jae-Won
[1
]
机构:
[1] Sungkyunkwan Univ, Dept Surg, Sch Med, Seoul, South Korea
[2] Sungkyunkwan Univ, Samsung Med Ctr, Dept Radiol, Sch Med, Seoul, South Korea
[3] Sungkyunkwan Univ, Samsung Med Ctr, Dept Surg, Sch Med, 81 Irwon Ro, Seoul 06351, South Korea
[4] Sungkyunkwan Univ, Ctr Imaging Sci, Samsung Med Ctr, Dept Radiol,Sch Med, 81 Irwon Ro, Seoul 06351, South Korea
cholangiopancreatography;
deep learning;
liver;
living-donor;
magnetic resonance;
SURVIVAL BENEFIT;
TRANSPLANTATION;
RESOLUTION;
OUTCOMES;
MODEL;
D O I:
10.1097/JS9.0000000000001067
中图分类号:
R61 [外科手术学];
学科分类号:
摘要:
Background:This study aimed to develop an automated segmentation system for biliary structures using a deep learning model, based on data from magnetic resonance cholangiopancreatography (MRCP).Materials and methods:Living liver donors who underwent MRCP using the gradient and spin echo technique followed by three-dimensional modeling were eligible for this study. A three-dimensional residual U-Net model was implemented for the deep learning process. Data were divided into training and test sets at a 9:1 ratio. Performance was assessed using the dice similarity coefficient to compare the model's segmentation with the manually labeled ground truth.Results:The study incorporated 250 cases. There was no difference in the baseline characteristics between the train set (n=225) and test set (n=25). The overall mean Dice Similarity Coefficient was 0.80 +/- 0.20 between the ground truth and inference result. The qualitative assessment of the model showed relatively high accuracy especially for the common bile duct (88%), common hepatic duct (92%), hilum (96%), right hepatic duct (100%), and left hepatic duct (96%), while the third-order branch of the right hepatic duct (18.2%) showed low accuracy.Conclusion:The developed automated segmentation model for biliary structures, utilizing MRCP data and deep learning techniques, demonstrated robust performance and holds potential for further advancements in automation.
机构:
Seoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
Seoul Natl Univ, Dept Radiol, Coll Med, 101 Daehangno, Seoul 110744, South KoreaSeoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
Kang, Hyo-Jin
Lee, Jeong Min
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
Seoul Natl Univ, Dept Radiol, Coll Med, 101 Daehangno, Seoul 110744, South KoreaSeoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
Lee, Jeong Min
Ahn, Su Joa
论文数: 0引用数: 0
h-index: 0
机构:
Gachon Univ, Gil Med Ctr, Dept Radiol, Incheon, South KoreaSeoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
Ahn, Su Joa
Bae, Jae Seok
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
Seoul Natl Univ, Dept Radiol, Coll Med, 101 Daehangno, Seoul 110744, South KoreaSeoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
Bae, Jae Seok
Kannengiesser, Stephan
论文数: 0引用数: 0
h-index: 0
机构:
Siemens Healthcare Gmbh, Erlangen, GermanySeoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
Kannengiesser, Stephan
Kiefer, Berthold
论文数: 0引用数: 0
h-index: 0
机构:
Siemens Healthcare Gmbh, Erlangen, GermanySeoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
Kiefer, Berthold
Suh, Kyung-Suk
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ Hosp, Dept Surg, Seoul, South KoreaSeoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea