Multi-objective optimization of residential building energy consumption, daylighting, and thermal comfort based on BO-XGBoost-NSGA-II

被引:30
|
作者
Wu, Chengjin [1 ]
Pan, Haize [1 ]
Luo, Zhenhua [1 ]
Liu, Chuan [1 ]
Huang, Hulongyi [1 ]
机构
[1] Southwest Petr Univ, Sch Civil Engn & Geomat, Chengdu 610500, Peoples R China
基金
中国国家自然科学基金;
关键词
Building multi-objective optimization; Residential building; XGBoost; Thermal comfort performance; Daylighting performance; GENETIC ALGORITHM; PERFORMANCE;
D O I
10.1016/j.buildenv.2024.111386
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The energy consumption, daylighting, and thermal comfort of buildings directly affect the three key goals of residents. However, there is little research on the optimization of energy consumption, daylighting, and thermal comfort in residential buildings in China. Therefore, this study proposes an optimization framework that combines Bayesian optimization with extreme gradient boosting trees (BO-XGBoost) and non-dominated genetic algorithm-II (NSGA-II) to study the multi-objective optimization of residential building performance. This paper first uses Grasshopper to simulate and obtain a dataset through Latin hypercube sampling (LHS). BO-XGBoost is used to establish the regression relationship between building envelope design parameters and residential building performance. Then, the obtained regression model is used as the fitness function of NSGA-II to get the Pareto optimal solution set. Finally, the ideal point method is used to obtain the optimal combination of building envelope structure parameters for residential buildings. Taking a residential building in a hot summer and cold winter area as an example, the effectiveness of this method is verified. The results show that (1) BO-XGBoost has excellent predictive performance, with R 2 values of 0.997, 0.960, and 0.994 for energy consumption, thermal comfort, and daylighting, respectively. (2) The proposed BO-XGBoost-NSGA-II can effectively achieve multiobjective optimization. Compared with the initial scheme of the case building, energy consumption is reduced by 44.1%, thermal comfort index is reduced by 10.9%, and daylighting performance is improved by 1.7%. Therefore, the proposed method can effectively optimize the performance goals of residential buildings and provide practical ideas for similar problems.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Multi-objective Optimization of Solar Thermal Systems Applied to Residential Building in Portugal
    Ferreira, Ana Cristina
    Silva, Angela
    Teixeira, Senhorinha
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2019, PT VI: 19TH INTERNATIONAL CONFERENCE, SAINT PETERSBURG, RUSSIA, JULY 14, 2019, PROCEEDINGS, PART VI, 2019, 11624 : 26 - 39
  • [42] Multi-objective Optimization of a Residential Building Envelope in the Bahamas
    Bingham, Raymond
    Agelin-Chaab, Martin
    Rosen, Marc A.
    2017 5TH IEEE INTERNATIONAL CONFERENCE ON SMART ENERGY GRID ENGINEERING (SEGE), 2017, : 294 - 301
  • [43] Multi-objective configuration optimization of modularized product based on NSGA-II
    State Key Lab. of CAD and CG, Zhejiang University, Hangzhou 310027, China
    Jisuanji Jicheng Zhizao Xitong, 2007, 11 (2092-2098+2161):
  • [44] Multi-objective optimization of liquid metal bearing based on NSGA-II
    Tang, Siwei
    Zhang, Guohua
    Zheng, Yueqing
    Xie, Gongnan
    Cui, Hailong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2025, 239 (02) : 151 - 162
  • [45] Multi-objective optimization of power system reconstruction based on NSGA-II
    Wang, Hongtao
    Liu, Yutian
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2009, 33 (23): : 14 - 18
  • [46] Multi-Objective Robust Optimization Based on NSGA-II and Degree of Robustness
    Qiang, Jie
    Qi, Rongbin
    Qian, Feng
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 4859 - 4864
  • [47] Multi-objective Optimization Scheduling Model Based on NSGA-II Algorithm
    Bian, Ruifeng
    Tan, Wenyi
    Li, Yilun
    Hou, Yichen
    2020 IEEE THE 3RD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING (ICECE), 2020, : 149 - 156
  • [48] Multi-objective Optimization for AUV Conceptual Design Based on NSGA-II
    Xia, Guoqing
    Liu, Caiyun
    Chen, Xinghua
    OCEANS 2016 - SHANGHAI, 2016,
  • [49] Multi-Objective Network Coding Optimization Based On NSGA-II Algorithm
    Hao, Kun
    Wang, Beibei
    Luo, Yongmei
    2012 INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND COMMUNICATION TECHNOLOGY (ICCECT 2012), 2012, : 843 - 846
  • [50] Multi-objective optimization of FCC separation system based on NSGA-II
    Liu, Yingjie
    Chu, Menghao
    Ye, Qing
    Li, Jinlong
    Han, Deqiu
    CHEMICAL ENGINEERING SCIENCE, 2025, 302