Unveiling the Power of Social Influence: A Machine Learning Framework for Churn Prediction With Network Analysis

被引:0
|
作者
Amiri, Babak [1 ]
Hosseini, Seyed Hasan [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Ind Engn, Tehran 1684613114, Iran
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Social network; influence analysis; conformity analysis; customer churn; machine learning; CUSTOMER CHURN;
D O I
10.1109/ACCESS.2024.3402684
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Customer churn is a significant concern for firms due to the high cost of acquiring new customers. The expenditure related to developing new consumers surpasses that of customer retention. Customer churn prediction models were given to analyze the impact of this problem on organizations' revenues. These models primarily utilize machine learning algorithms to predict outcomes using data from demographic factors and customer service information components. This study investigates the impact of social relationships on customer churn probability and evaluates the performance of machine learning methods after introducing a new concept called the conformity factor. To improve the performance of standard machine learning models, we performed feature engineering by leveraging phone call network data and developing influence and conformity metrics. These metrics capture the social connections of individuals within the network. We employed various machine learning classification approaches and evaluated their performance using standard measures like AUC, accuracy, precision, F1-score, MCC, Cohen's kappa, and Brier score. The experiments demonstrated that incorporating these social network variables, particularly the proposed influence and conformity indices, significantly enhanced the performance of all churn prediction models developed in this study. Among the tested approaches, the gradient boosting model achieved the highest level of performance.
引用
收藏
页码:71271 / 71285
页数:15
相关论文
共 50 条
  • [21] Advanced Customer Churn Prediction Using Machine Learning
    Yuzer, Gizem
    Tinaz, Zeynep Sena
    Yurtbas, Erva
    Ayata, Deger
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [22] Machine Learning for Customer Churn Prediction in Retail Banking
    Dias, Joana
    Godinho, Pedro
    Torres, Pedro
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT III, 2020, 12251 : 576 - 589
  • [23] Machine Learning Models for Customer Churn Risk Prediction
    Akan, Oguzhan
    Verma, Abhishek
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 623 - 628
  • [24] Customer Churn Prediction by Classification Models in Machine Learning
    Zhao, Heng
    Zuo, Xumin
    Xie, Yuanyuan
    2022 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE 2022), 2022, : 399 - 407
  • [25] Customer churn prediction system: a machine learning approach
    Lalwani, Praveen
    Mishra, Manas Kumar
    Chadha, Jasroop Singh
    Sethi, Pratyush
    COMPUTING, 2022, 104 (02) : 271 - 294
  • [26] Machine Learning Framework for Power Delivery Network Modelling
    Sourav, Soumya
    Roy, Abinash
    Cao, Yi
    Pandey, Shree
    2020 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY AND SIGNAL & POWER INTEGRITY VIRTUAL SYMPOSIUM(IEEE EMC+SIPI), 2020, : 10 - 15
  • [27] Churn prediction in a real online social network using local community analysis
    Ngonmang, Blaise
    Viennet, Emmanuel
    Tchuente, Maurice
    2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2012, : 282 - 288
  • [28] Social Network Classifier for Churn Prediction in Telecom Data
    Pushpa
    Shobha, G.
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION SYSTEMS (ICACCS), 2013,
  • [29] Predictive Churn Analysis with Machine Learning Methods
    Gunay, Melike
    Ensari, Tolga
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [30] Developing machine learning based framework for the network traffic prediction
    Murugesan, G.
    Jaiswal, Rachana
    Kshatri, Sapna Singh
    Bhonsle, Devanand
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2022, 13 (03): : 777 - 784