KERNEL INTERPOLATION OF HIGH DIMENSIONAL SCATTERED DATA

被引:0
|
作者
Lin, Shao-Bo [1 ]
Chang, Xiangyu [1 ]
Sun, Xingping [2 ]
机构
[1] Xi An Jiao Tong Univ, Ctr Intelligent Decis Making & Machine Learning, Sch Management, Xian 710049, Peoples R China
[2] Missouri State Univ, Dept Math, Springfield, MO 65897 USA
基金
中国国家自然科学基金;
关键词
high dimension; kernel interpolation; random sampling; stochastic approximation; RADIAL-BASIS; MULTIVARIATE INTERPOLATION; APPROXIMATION; POLYNOMIALS; REGRESSION; SPACES;
D O I
10.1137/22M1519948
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Data sites selected from modeling high-dimensional problems often appear scattered in nonpaternalistic ways. Except for sporadic-clustering at some spots, they become relatively far apart as the dimension of the ambient space grows. These features defy any theoretical treatment that requires local or global quasi-uniformity of distribution of data sites. Incorporating a recentlydeveloped application of integral operator theory in machine learning, we propose and study in the current article a new framework to analyze kernel interpolation of high-dimensional data, which features bounding stochastic approximation error by the spectrum of the underlying kernel matrix. Both theoretical analysis and numerical simulations show that spectra of kernel matrices are reliable and stable barometers for gauging the performance of kernel-interpolation methods for high-dimensional data.
引用
收藏
页码:1098 / 1118
页数:21
相关论文
共 50 条
  • [21] Preconditioned Iterative Methods for Scattered Data Interpolation
    Tom Lyche
    Trygve K. Nilssen
    Ragnar Winther
    Advances in Computational Mathematics, 2002, 17 : 237 - 256
  • [22] Scattered data quasi-interpolation on spheres
    Chen, Zhixiang
    Cao, Feilong
    Li, Ming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (12) : 2527 - 2536
  • [23] Complementary Lidstone interpolation on scattered data sets
    Costabile, F. A.
    Dell'Accio, F.
    Di Tommaso, F.
    NUMERICAL ALGORITHMS, 2013, 64 (01) : 157 - 180
  • [24] Preconditioned iterative methods for scattered data interpolation
    Lyche, T
    Nilssen, TK
    Winther, R
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2002, 17 (03) : 237 - 256
  • [25] Error estimates for scattered data interpolation on spheres
    Jetter, K
    Stöckler, J
    Ward, JD
    MATHEMATICS OF COMPUTATION, 1999, 68 (226) : 733 - 747
  • [26] Local Normal Estimation for Scattered Data Interpolation
    Ping, Si
    Pang, Kong Voon
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 448 - 452
  • [27] MULTIVARIATE INTERPOLATION OF LARGE SETS OF SCATTERED DATA
    RENKA, RJ
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1988, 14 (02): : 139 - 148
  • [28] LOCAL DERIVATIVE ESTIMATION FOR SCATTERED DATA INTERPOLATION
    GOODMAN, TNT
    SAID, HB
    CHANG, LHT
    APPLIED MATHEMATICS AND COMPUTATION, 1995, 68 (01) : 41 - 50
  • [29] Numerical cubature on scattered data by adaptive interpolation
    Cavoretto, Roberto
    De Rossi, Alessandra
    Dell'Accio, Francesco
    Di Tommaso, Filomena
    Siar, Najoua
    Sommariva, Alvise
    Vianello, Marco
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 444
  • [30] Using scattered data interpolation for radiosity reconstruction
    Hinkenjann, A
    Pietrek, G
    COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 1998, : 715 - 720