Adaptive explainable artificial intelligence for visual defect inspection

被引:1
|
作者
Rozanec, Joze M. [1 ,2 ,3 ]
Sircelj, Beno [1 ]
Fortuna, Blaz [3 ]
Mladenic, Dunja [2 ]
机构
[1] Jozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, Slovenia
[2] Jozef Stefan Inst, Jamova Cesta 39, Ljubljana 1000, Slovenia
[3] Qlector Doo, Rovsnikova 7, Ljubljana, Slovenia
基金
欧盟地平线“2020”;
关键词
Intelligent Manufacturing Systems; Quality Assurance and Maintenance; Fault Detection; Visual Inspection; Human Centred Automation; Adaptive Interfaces; Artificial Intelligence; Explainable Artificial Intelligence;
D O I
10.1016/j.procs.2024.02.119
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Explainable Artificial Intelligence promises to deliver means so that humans better understand the rationale behind a particular machine learning model. In the image domain, such information is frequently conveyed through heat maps. Along the same line, information regarding defect detection for unsupervised methods applied to images can be conveyed through anomaly maps. Nev- ertheless, heat maps or anomaly maps can convey inaccurate information (artifacts), or their perceptions may differ across different persons. Therefore, the user experience could be enhanced by collecting human feedback and creating predictive models on how these could be recolored to bridge the gap between the original heat maps and anomaly maps created with explainability tech- niques and the output expected by humans. We envision this work as relevant in at least two scenarios. First, enhance anomaly and heat maps when conveying information regarding machine vision models deployed in production to remove information deemed unnecessary by the user but systematically present through the explainability technique due to underlying model issues (artifacts). Second, adapt anomaly and heat maps based on users' perceptual needs and preferences.
引用
收藏
页码:3034 / 3043
页数:10
相关论文
共 50 条
  • [21] Explainable Artificial Intelligence for Cybersecurity
    Sharma, Deepak Kumar
    Mishra, Jahanavi
    Singh, Aeshit
    Govil, Raghav
    Srivastava, Gautam
    Lin, Jerry Chun-Wei
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [22] Explainable Artificial Intelligence: A Survey
    Dosilovic, Filip Karlo
    Brcic, Mario
    Hlupic, Nikica
    2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2018, : 210 - 215
  • [23] Adaptive Visual Tracking System Using Artificial Intelligence
    Kalirajani, K.
    Sudha, M.
    Rajeshkumar, V.
    Jamaesha, S. Syed
    2012 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2012, : 954 - 957
  • [24] Interpreting injection molding quality defect using explainable artificial intelligence and analysis of variance
    Tayalati, Faouzi
    Boukrouh, Ikhlass
    Azmani, Abdellah
    Azmani, Monir
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 147
  • [25] A Research Agenda for Hybrid Intelligence: Augmenting Human Intellect With Collaborative, Adaptive, Responsible, and Explainable Artificial Intelligence
    Akata, Zeynep
    Balliet, Dan
    de Rijke, Maarten
    Dignum, Frank
    Dignum, Virginia
    Eiben, Guszti
    Fokkens, Antske
    Grossi, Davide
    Hindriks, Koen
    Hoos, Holger
    Hung, Hayley
    Jonker, Catholijn
    Monz, Christof
    Neerincx, Mark
    Oliehoek, Frans
    Prakken, Henry
    Schlobach, Stefan
    van der Gaag, Linda
    van Harmelen, Frank
    van Hoof, Herke
    van Riemsdijk, Birna
    van Wynsberghe, Aimee
    Verbrugge, Rineke
    Verheij, Bart
    Vossen, Piek
    Welling, Max
    COMPUTER, 2020, 53 (08) : 18 - 28
  • [26] Memristive Explainable Artificial Intelligence Hardware
    Song, Hanchan
    Park, Woojoon
    Kim, Gwangmin
    Choi, Moon Gu
    In, Jae Hyun
    Rhee, Hakseung
    Kim, Kyung Min
    ADVANCED MATERIALS, 2024, 36 (25)
  • [27] Effects of Explainable Artificial Intelligence in Neurology
    Gombolay, G.
    Silva, A.
    Schrum, M.
    Dutt, M.
    Hallman-Cooper, J.
    Gombolay, M.
    ANNALS OF NEUROLOGY, 2023, 94 : S145 - S145
  • [28] Drug discovery with explainable artificial intelligence
    Jimenez-Luna, Jose
    Grisoni, Francesca
    Schneider, Gisbert
    NATURE MACHINE INTELLIGENCE, 2020, 2 (10) : 573 - 584
  • [29] Explainable Artificial Intelligence for Combating Cyberbullying
    Tesfagergish, Senait Gebremichael
    Damasevicius, Robertas
    SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, PT 1, ICSOFTCOMP 2023, 2024, 2030 : 54 - 67
  • [30] Drug discovery with explainable artificial intelligence
    José Jiménez-Luna
    Francesca Grisoni
    Gisbert Schneider
    Nature Machine Intelligence, 2020, 2 : 573 - 584