N-spherical Functors and Tensor Categories

被引:0
|
作者
Coulembier, Kevin [1 ]
Etingof, Pavel [2 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, Australia
[2] MIT, Dept Math, Cambridge, MA 02139 USA
基金
澳大利亚研究理事会;
关键词
D O I
10.1093/imrn/rnae093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply the recently introduced notion, due to Dyckerhoff, Kapranov, and Schechtman, of $N$ -spherical functors of stable infinity categories, which generalise spherical functors, to the setting of monoidal categories. We call an object $N$ -bounded if the corresponding regular endofunctor on the derived category is $N$ -spherical. Besides giving new examples of $N$ -spherical functors, the notion of $N$ -bounded objects gives surprising connections with Jones-Wenzl idempotents, Frobenius-Perron dimensions, and central conjectures in the field of symmetric tensor categories in positive characteristic.
引用
收藏
页码:10615 / 10649
页数:35
相关论文
共 50 条
  • [41] Determinant functors on triangulated categories
    Breuning, Manuel
    JOURNAL OF K-THEORY, 2011, 8 (02) : 251 - 291
  • [42] FUNCTORS ON CATEGORIES OF NUCLEAR SPACES
    HASLINGER, F
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1976, 24 (01): : 51 - 55
  • [43] Quadratic functors on pointed categories
    Hartl, Manfred
    Vespa, Christine
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 3927 - 4010
  • [44] DERIVED FUNCTORS IN ABELIAN CATEGORIES
    AMITSUR, SA
    JOURNAL OF MATHEMATICS AND MECHANICS, 1961, 10 (06): : 971 - 994
  • [45] Grothendieck categories of enriched functors
    Al Hwaeer, Hassan
    Garkusha, Grigory
    JOURNAL OF ALGEBRA, 2016, 450 : 204 - 241
  • [46] Flops and spherical functors
    Bodzenta, Agnieszka
    Bondal, Alexey
    COMPOSITIO MATHEMATICA, 2022, 158 (05) : 1125 - 1187
  • [47] A note on spherical functors
    Meachan, Ciaran
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 956 - 962
  • [48] Relative left derived functors of tensor product functors
    Jun Fu Wang
    Zhao Yong Huang
    Acta Mathematica Sinica, English Series, 2016, 32 : 753 - 764
  • [49] Relative Left Derived Functors of Tensor Product Functors
    Jun Fu WANG
    Zhao Yong HUANG
    ActaMathematicaSinica, 2016, 32 (07) : 753 - 764
  • [50] Relative Left Derived Functors of Tensor Product Functors
    Wang, Jun Fu
    Huang, Zhao Yong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (07) : 753 - 764