Laser-Scribed Battery Electrodes for Ultrafast Zinc-Ion Energy Storage

被引:2
|
作者
Liu, Bo [1 ]
Huang, Ailun [2 ]
Yuan, Xintong [1 ]
Chang, Xueying [2 ]
Yang, Zhiyin [2 ]
Lyle, Katelyn [1 ]
Kaner, Richard B. [2 ,3 ,4 ]
Li, Yuzhang [1 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
关键词
co-insertion large-scale energy storage; laser-scribing; vanadium oxide; zinc-ion batteries; TIO2; ANATASE; CATHODE; INSERTION; OXIDE; PERFORMANCE; FILMS; ANODE;
D O I
10.1002/adma.202404796
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous Zn batteries are promising for large-scale energy storage but are plagued by the lack of high-performance cathode materials that enable high specific capacity, ultrafast charging, and outstanding cycling stability. Here, a laser-scribed nano-vanadium oxide (LNVO) cathode is designed that can simultaneously achieve these properties. The material stores charge through Faradaic redox reactions on/near the surface at fast rates owing to the small grain size of vanadium oxide and interpenetrating 3D graphene network, displaying a surface-controlled capacity contribution (90%-98%). Multiple characterization techniques unambiguously reveal that zinc and hydronium ions co-insert with minimal lattice change upon cycling. It is demonstrated that a high specific capacity of 553 mAh g(-1) is achieved at 0.1 A g(-1), and an impressive 264 mAh g(-1) capacity is retained at 100 A g(-1) within 10 s, showing excellent rate capability. The LNVO/Zn can also reach >90% capacity retention after 3000 cycles at a high rate of 30 A g(-1), as well as achieving both high energy (369 Wh kg(-1)) and power densities (56306 W kg(-1)). Moreover, the LNVO cathode retains its excellent cycling performance when integrated into quasi-solid-state pouch cells, further demonstrating mechanical stability and its potential for practical application in wearable and grid-scale applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Recent advances in energy storage mechanism of aqueous zinc-ion batteries
    Duo Chen
    Mengjie Lu
    Dong Cai
    Hang Yang
    Wei Han
    Journal of Energy Chemistry , 2021, (03) : 712 - 726
  • [32] Toward practical aqueous zinc-ion batteries for electrochemical energy storage
    Li, Chang
    Jin, Shuo
    Archer, Lynden A.
    Nazar, Linda F.
    JOULE, 2022, 6 (08) : 1733 - 1738
  • [33] Promising zinc-ion battery cathode created
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2016, 94 (35) : 13 - 13
  • [34] Progress and perspective of aqueous zinc-ion battery
    Ma, Nengyan
    Wu, Peijun
    Wu, Yixue
    Jiang, Donghao
    Lei, Gangtie
    FUNCTIONAL MATERIALS LETTERS, 2019, 12 (05)
  • [35] Recent advances in energy storage mechanism of aqueous zinc-ion batteries
    Chen, Duo
    Lu, Mengjie
    Cai, Dong
    Yang, Hang
    Han, Wei
    JOURNAL OF ENERGY CHEMISTRY, 2021, 54 : 712 - 726
  • [36] Modification of aluminum current collectors with laser-scribed graphene for enhancing the performance of lithium ion batteries
    Cho, Er-Chieh
    Chang-Jian, Cai-Wan
    Wu, Yen-Ju
    Chao, Szu-Han
    Huang, Jen-Hsien
    Lee, Kuen-Chan
    Weng, Huei Chu
    Hsu, Shih-Chieh
    JOURNAL OF POWER SOURCES, 2021, 506
  • [37] Maximizing the ion accessibility and high mechanical strength in nanoscale ion channel MXene electrodes for high-capacity zinc-ion energy storage
    Cheng, Yongfa
    Xie, Yimei
    Yan, Shuwen
    Liu, Zunyu
    Ma, Yanan
    Yue, Yang
    Wang, Jianbo
    Gao, Yihua
    Li, Luying
    SCIENCE BULLETIN, 2022, 67 (21) : 2216 - 2224
  • [38] Porous Laser-Scribed Graphene Electrodes Modified with Zwitterionic Moieties: A Strategy for Antibiofouling and Low-Impedance Interfaces
    Zambrano, Alanis C.
    Loiola, Livia M. D.
    Bukhamsin, Abdullah
    Gorecki, Radoslaw
    Harrison, George
    Mani, Veerappan
    Fatayer, Shadi
    Nunes, Suzana P.
    Salama, Khaled N.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (04) : 4408 - 4419
  • [39] Challenges and strategies for ultrafast aqueous zinc-ion batteries
    Qiao-Nan Zhu
    Zhen-Ya Wang
    Jia-Wei Wang
    Xiao-Yu Liu
    Dan Yang
    Li-Wei Cheng
    Meng-Yao Tang
    Yu Qin
    Hua Wang
    RareMetals, 2021, 40 (02) : 309 - 328
  • [40] Challenges and strategies for ultrafast aqueous zinc-ion batteries
    Zhu, Qiao-Nan
    Wang, Zhen-Ya
    Wang, Jia-Wei
    Liu, Xiao-Yu
    Yang, Dan
    Cheng, Li-Wei
    Tang, Meng-Yao
    Qin, Yu
    Wang, Hua
    RARE METALS, 2021, 40 (02) : 309 - 328