Mean curvature flow solitons in warped products: nonexistence, rigidity and stability

被引:0
|
作者
de Lima, Henrique F. [1 ]
Santos, Marcio S. [2 ]
Velasquez, Marco Antonio L. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Riemannian warped products; Schwarzschild and Reissner-Nordstr & ouml; m spaces; Mean curvature flow solitons; Self-shrinkers; Self-expanders; Translating solitons; Entire graphs; Strong stability; COMPLETE VERTICAL GRAPHS; COMPLETE SELF-SHRINKERS; HYPERSURFACES; THEOREMS; UNIQUENESS; SURFACES; MANIFOLDS; INFINITY; UNICITY;
D O I
10.1007/s12215-024-01066-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with several aspects of the geometry of m-dimensional mean curvature flow solitons immersed in a Riemannian warped product IxfMn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\times _{f}M<^>n$$\end{document} (m <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\le n$$\end{document}), with base I subset of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\subset {\mathbb {R}}$$\end{document}, fiber Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M<^>n$$\end{document} and warping function f is an element of C infinity(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in C<^>\infty (I)$$\end{document}. In this context, we apply suitable maximum principles to guarantee that such a mean curvature flow soliton is a slice of the ambient space, as well as to obtain nonexistence results concerning these geometric objects. When m=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=n$$\end{document}, we investigate complete two-sided hypersurfaces and, in particular, entire graphs constructed over the fiber Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M<^>n$$\end{document} which are mean curvature flow solitons. Furthermore, we infer the stability of closed mean curvature flow solitons with respect to an appropriate stability operator. Applications to self-shrinkers and self-expanders in the Euclidean space and to mean curvature flow solitons in important ambient spaces, like the pseudo-hyperbolic, Schwarzschild and Reissner-Nordstr & ouml;m spaces, are also given.
引用
收藏
页码:2653 / 2688
页数:36
相关论文
共 50 条
  • [41] Rigidity of self-shrinkers and translating solitons of mean curvature flows
    Chen, Qun
    Qiu, Hongbing
    ADVANCES IN MATHEMATICS, 2016, 294 : 517 - 531
  • [42] ALMOST RIGIDITY OF WARPED PRODUCTS AND THE STRUCTURE OF SPACES WITH RICCI CURVATURE BOUNDED BELOW
    CHEEGER, J
    COLDING, TH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (03): : 353 - 357
  • [43] The nonexistence of gradient almost Ricci solitons warped product
    Tokura, Willian
    Adriano, Levi
    Pina, Romildo
    Barboza, Marcelo
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 82
  • [44] Rigidity of complete ancient solutions to the mean curvature flow
    Qiu, Hongbing
    MATHEMATICAL RESEARCH LETTERS, 2024, 31 (04) : 1169 - 1187
  • [45] Criteria of instability of surfaces of zero mean curvature in warped Lorentz products
    Klyachin, VA
    Miklyukov, VM
    SBORNIK MATHEMATICS, 1996, 187 (11-12) : 1643 - 1663
  • [46] Lagrangian Homothetic Solitons for the Inverse Mean Curvature Flow
    Ildefonso Castro
    Ana M. Lerma
    Results in Mathematics, 2017, 71 : 1109 - 1125
  • [47] Conformal solitons to the mean curvature flow and minimal submanifolds
    Arezzo, C.
    Sun, J.
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (8-9) : 772 - 790
  • [48] GAUSS MAPS OF TRANSLATING SOLITONS OF MEAN CURVATURE FLOW
    Bao, Chao
    Shi, Yuguang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (12) : 4333 - 4339
  • [49] Conformal solitons for the mean curvature flow in hyperbolic space
    L. Mari
    J. Rocha de Oliveira
    A. Savas-Halilaj
    R. Sodré de Sena
    Annals of Global Analysis and Geometry, 2024, 65
  • [50] Translating Solitons of Mean Curvature Flow of Noncompact Submanifolds
    Guanghan Li
    Daping Tian
    Chuanxi Wu
    Mathematical Physics, Analysis and Geometry, 2011, 14 : 83 - 99