Mean curvature flow solitons in warped products: nonexistence, rigidity and stability

被引:0
|
作者
de Lima, Henrique F. [1 ]
Santos, Marcio S. [2 ]
Velasquez, Marco Antonio L. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Riemannian warped products; Schwarzschild and Reissner-Nordstr & ouml; m spaces; Mean curvature flow solitons; Self-shrinkers; Self-expanders; Translating solitons; Entire graphs; Strong stability; COMPLETE VERTICAL GRAPHS; COMPLETE SELF-SHRINKERS; HYPERSURFACES; THEOREMS; UNIQUENESS; SURFACES; MANIFOLDS; INFINITY; UNICITY;
D O I
10.1007/s12215-024-01066-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with several aspects of the geometry of m-dimensional mean curvature flow solitons immersed in a Riemannian warped product IxfMn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\times _{f}M<^>n$$\end{document} (m <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\le n$$\end{document}), with base I subset of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\subset {\mathbb {R}}$$\end{document}, fiber Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M<^>n$$\end{document} and warping function f is an element of C infinity(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in C<^>\infty (I)$$\end{document}. In this context, we apply suitable maximum principles to guarantee that such a mean curvature flow soliton is a slice of the ambient space, as well as to obtain nonexistence results concerning these geometric objects. When m=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=n$$\end{document}, we investigate complete two-sided hypersurfaces and, in particular, entire graphs constructed over the fiber Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M<^>n$$\end{document} which are mean curvature flow solitons. Furthermore, we infer the stability of closed mean curvature flow solitons with respect to an appropriate stability operator. Applications to self-shrinkers and self-expanders in the Euclidean space and to mean curvature flow solitons in important ambient spaces, like the pseudo-hyperbolic, Schwarzschild and Reissner-Nordstr & ouml;m spaces, are also given.
引用
收藏
页码:2653 / 2688
页数:36
相关论文
共 50 条
  • [1] Rigidity of Mean Curvature Flow Solitons and Uniqueness of Solutions of the Mean Curvature Flow Soliton Equation in Certain Warped Products
    Batista, Marcio
    de Lima, Henrique F.
    Gomes, Wallace F.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [2] Rigidity of Mean Curvature Flow Solitons and Uniqueness of Solutions of the Mean Curvature Flow Soliton Equation in Certain Warped Products
    Márcio Batista
    Henrique F. de Lima
    Wallace F. Gomes
    Mediterranean Journal of Mathematics, 2023, 20
  • [3] ON THE RIGIDITY OF MEAN CURVATURE FLOW SOLITONS IN CERTAIN SEMI-RIEMANNIAN WARPED PRODUCTS
    Araujo, Jogli G.
    De Lima, Henrique F.
    Gomes, Wallace F.
    KODAI MATHEMATICAL JOURNAL, 2023, 46 (01) : 62 - 74
  • [4] Aspects of Mean Curvature Flow Solitons in Warped Products
    Iury Domingos
    Márcio Santos
    Results in Mathematics, 2023, 78
  • [5] Aspects of Mean Curvature Flow Solitons in Warped Products
    Domingos, Iury
    Santos, Marcio
    RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [6] REMARKS ON MEAN CURVATURE FLOW SOLITONS IN WARPED PRODUCTS
    Colombo, Giulio
    Mari, Luciano
    Rigoli, Marco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (07): : 1957 - 1991
  • [7] ERRATUM TO: REMARKS ON MEAN CURVATURE FLOW SOLITONS IN WARPED PRODUCTS
    Colombo, G. I. U. L. I. O.
    Mari, L. U. C. I. A. N. O.
    Rigoli, M. A. R. C. O.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022,
  • [8] Stability of mean curvature flow solitons in warped product spaces
    Alias, Luis J.
    de Lira, Jorge H. S.
    Rigoli, Marco
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (02): : 287 - 309
  • [9] Stability of mean curvature flow solitons in warped product spaces
    Luis J. Alías
    Jorge H. S. de Lira
    Marco Rigoli
    Revista Matemática Complutense, 2022, 35 : 287 - 309
  • [10] Nonexistence and rigidity of spacelike mean curvature flow solitons immersed in a GRW spacetime
    Freitas, Allan
    de Lima, Henrique F.
    Santos, Marcio S.
    Sindeaux, Joyce S.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 63 (01)