Mean curvature flow solitons in warped products: nonexistence, rigidity and stability

被引:0
|
作者
de Lima, Henrique F. [1 ]
Santos, Marcio S. [2 ]
Velasquez, Marco Antonio L. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Riemannian warped products; Schwarzschild and Reissner-Nordstr & ouml; m spaces; Mean curvature flow solitons; Self-shrinkers; Self-expanders; Translating solitons; Entire graphs; Strong stability; COMPLETE VERTICAL GRAPHS; COMPLETE SELF-SHRINKERS; HYPERSURFACES; THEOREMS; UNIQUENESS; SURFACES; MANIFOLDS; INFINITY; UNICITY;
D O I
10.1007/s12215-024-01066-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with several aspects of the geometry of m-dimensional mean curvature flow solitons immersed in a Riemannian warped product IxfMn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\times _{f}M<^>n$$\end{document} (m <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\le n$$\end{document}), with base I subset of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\subset {\mathbb {R}}$$\end{document}, fiber Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M<^>n$$\end{document} and warping function f is an element of C infinity(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in C<^>\infty (I)$$\end{document}. In this context, we apply suitable maximum principles to guarantee that such a mean curvature flow soliton is a slice of the ambient space, as well as to obtain nonexistence results concerning these geometric objects. When m=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=n$$\end{document}, we investigate complete two-sided hypersurfaces and, in particular, entire graphs constructed over the fiber Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M<^>n$$\end{document} which are mean curvature flow solitons. Furthermore, we infer the stability of closed mean curvature flow solitons with respect to an appropriate stability operator. Applications to self-shrinkers and self-expanders in the Euclidean space and to mean curvature flow solitons in important ambient spaces, like the pseudo-hyperbolic, Schwarzschild and Reissner-Nordstr & ouml;m spaces, are also given.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Rigidity of Mean Curvature Flow Solitons and Uniqueness of Solutions of the Mean Curvature Flow Soliton Equation in Certain Warped Products
    Batista, Marcio
    de Lima, Henrique F.
    Gomes, Wallace F.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [2] Rigidity of Mean Curvature Flow Solitons and Uniqueness of Solutions of the Mean Curvature Flow Soliton Equation in Certain Warped Products
    Márcio Batista
    Henrique F. de Lima
    Wallace F. Gomes
    [J]. Mediterranean Journal of Mathematics, 2023, 20
  • [3] ON THE RIGIDITY OF MEAN CURVATURE FLOW SOLITONS IN CERTAIN SEMI-RIEMANNIAN WARPED PRODUCTS
    Araujo, Jogli G.
    De Lima, Henrique F.
    Gomes, Wallace F.
    [J]. KODAI MATHEMATICAL JOURNAL, 2023, 46 (01) : 62 - 74
  • [4] Aspects of Mean Curvature Flow Solitons in Warped Products
    Domingos, Iury
    Santos, Marcio
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [5] Aspects of Mean Curvature Flow Solitons in Warped Products
    Iury Domingos
    Márcio Santos
    [J]. Results in Mathematics, 2023, 78
  • [6] REMARKS ON MEAN CURVATURE FLOW SOLITONS IN WARPED PRODUCTS
    Colombo, Giulio
    Mari, Luciano
    Rigoli, Marco
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (07): : 1957 - 1991
  • [7] ERRATUM TO: REMARKS ON MEAN CURVATURE FLOW SOLITONS IN WARPED PRODUCTS
    Colombo, G. I. U. L. I. O.
    Mari, L. U. C. I. A. N. O.
    Rigoli, M. A. R. C. O.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022,
  • [8] Stability of mean curvature flow solitons in warped product spaces
    Alias, Luis J.
    de Lira, Jorge H. S.
    Rigoli, Marco
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (02): : 287 - 309
  • [9] Stability of mean curvature flow solitons in warped product spaces
    Luis J. Alías
    Jorge H. S. de Lira
    Marco Rigoli
    [J]. Revista Matemática Complutense, 2022, 35 : 287 - 309
  • [10] Nonexistence and rigidity of spacelike mean curvature flow solitons immersed in a GRW spacetime
    Freitas, Allan
    de Lima, Henrique F.
    Santos, Marcio S.
    Sindeaux, Joyce S.
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 63 (01)