Auxiliary model maximum likelihood gradient-based iterative identification for feedback nonlinear systems

被引:8
|
作者
Liu, Lijuan [1 ]
Li, Fu [1 ]
Ma, Junxia [2 ]
Xia, Huafeng [3 ]
机构
[1] Wuxi Univ, Coll Internet Things Engn, Wuxi 214105, Peoples R China
[2] Jiangnan Univ, Sch Internet Things Engn, Wuxi, Peoples R China
[3] Taizhou Univ, Taizhou Elect Power Convers & Control Engn Technol, Taizhou, Peoples R China
来源
关键词
feedback nonlinear system; gradient search; iterative identification; maximum likelihood; PARAMETER-ESTIMATION ALGORITHM; PERFORMANCE ANALYSIS; FAULT-DIAGNOSIS; STATE; OPTIMIZATION; TRACKING; DELAY;
D O I
10.1002/oca.3158
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article considers the iterative identification problems for a class of feedback nonlinear systems with moving average noise. The model contains both the dynamic linear module and the static nonlinear module, which brings challenges to the identification. By utilizing the key term separation technique, the unknown parameters from both linear and nonlinear modules are included in a parameter vector. Furthermore, an auxiliary model maximum likelihood gradient-based iterative algorithm is derived to estimate the unknown parameters. In addition, an auxiliary model maximum likelihood stochastic gradient algorithm is derived as a comparison. The numerical simulation results indicate that the auxiliary model maximum likelihood gradient-based iterative algorithm can effectively estimate the parameters of the feedback nonlinear systems and get more accurate parameter estimates than the auxiliary model maximum likelihood stochastic gradient algorithm. Auxiliary model maximum likelihood gradient-based iterative indentification for feedback nonlinear systems. The AM-ML-GI algorithm has faster convergence speed and higher parameter estimation accuracy compared with the AM-ML-SG algorithm. image
引用
收藏
页码:2346 / 2363
页数:18
相关论文
共 50 条
  • [21] Maximum likelihood based identification for nonlinear multichannel communications systems
    [J]. Rekik, Ouahbi (ouahbi.rekik@univ-paris13.fr), 1600, Elsevier B.V. (189):
  • [22] Maximum likelihood based identification for nonlinear multichannel communications systems
    Rekik, Ouahbi
    Abed-Meraim, Karim
    Nait-Meziane, Mohamed
    Mokraoui, Anissa
    Nguyen Linh Trung
    [J]. SIGNAL PROCESSING, 2021, 189
  • [23] Maximum likelihood-based gradient estimation for multivariable nonlinear systems using the multiinnovation identification theory
    Xia, Huafeng
    Ji, Yan
    Xu, Ling
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (14) : 5446 - 5463
  • [24] Gradient based iterative parameter identification for Wiener nonlinear systems
    Zhou, Lincheng
    Li, Xiangli
    Pan, Feng
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (16-17) : 8203 - 8209
  • [25] Gradient-based identification of hybrid systems
    Münz, E
    Hodrus, T
    Krebs, V
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2004, 10 (01) : 25 - 40
  • [26] Gradient-based feedback control of quantum systems
    Gerasimos G. Rigatos
    [J]. Rigatos, G. G. (grigat@ieee.org), 1600, Allerton Press Incorporation (21): : 77 - 85
  • [27] Auxiliary model-based interval-varying maximum likelihood estimation for nonlinear systems with missing data
    Xia, Huafeng
    Wu, Zhengle
    Xu, Sheng
    Liu, Lijuan
    Li, Yang
    Zhou, Yin
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024, 34 (02) : 1312 - 1323
  • [28] Auxiliary model based recursive extended least squares and maximum likelihood estimation algorithms for input nonlinear systems
    Li Junhong
    Jiang Ping
    Zhu Hairong
    Ding Rui
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 1848 - 1853
  • [29] Data Filtering Based Maximum Likelihood Gradient Method for Multivariable Nonlinear Systems
    Chen, Feiyan
    Ji, Kai
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 999 - 1004
  • [30] Gradient Parameter Estimation of a Class of Nonlinear Systems Based on the Maximum Likelihood Principle
    Chen Zhang
    Haibo Liu
    Yan Ji
    [J]. International Journal of Control, Automation and Systems, 2022, 20 : 1393 - 1404