Maximum power extraction of partially shaded solar photovoltaic array using reconfiguration method

被引:1
|
作者
Raju, M. [1 ]
Rajesh, P. [2 ]
Srinivasan, D. R. [3 ]
Sangno, Ralli [4 ]
机构
[1] Coll Engn Chengannur, Dept Elect Engn, Alapuzha 689121, Kerala, India
[2] Xpertmindz Innovat Solut Pvt Ltd, Dept Elect & Elect Engn, Kuzhithurai, Tamil Nadu, India
[3] JNTUA Coll Engn, Dept Mech Engn, Anantapur, Andhra Pradesh, India
[4] Natl Inst Technol, Dept Elect Engn, Papumpare, Arunachal Prade, India
关键词
PV array; maximum power; global power; resistors; Cheetah optimization algorithm (COA); and irradiance; PV ARRAYS; SYSTEM; OPTIMIZATION; ENHANCEMENT; POINT; CONFIGURATIONS; PERFORMANCE; MANAGEMENT; DISPERSION; ALGORITHM;
D O I
10.1080/23080477.2024.2350822
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article presents a reconfiguration strategy, named the Cheetah Optimization Algorithm (COA), for maximizing power generation in partially shaded solar photovoltaic (PSPV) arrays. The proposed method's originality aims to mitigate the negative impacts of partial shading, improve the output power of the PV system, and prevent thermal failure of shaded solar panels. The strategy combines efficient maximum power point tracking techniques with suitable photovoltaic system design topologies. The COA is done on the MATLAB platform and is analyzed with the existing methods such as the Wild Horse Optimizer (WHO), Salp Swarm Algorithm and Heap-based Optimizer. The outcome shows the superior performance of the COA in achieving the extraction of maximum power compared to the other methods. Additionally, by comparing the two patterns of partial shading, it is shown that the COA extracts more power than the existing methods and gets to the global power value faster. The COA is compared with existing methods, including WHO, SSA, and HBO. In terms of accuracy, the proposed system achieves the highest value of 0.93, surpassing the accuracy of HBO, WHO, and SSA, which stand at 0.8, 0.9, and 0.9, respectively. The specificity, precision and recall are also reflect the superiority of the proposed system with the values of 0.87, 0.9, and 0.86, respectively, outperforming the existing algorithms in most categories.
引用
收藏
页码:575 / 592
页数:18
相关论文
共 50 条
  • [21] Maximum Power Point Tracking Method for PV Array under Partially Shaded Condition
    Ji, Young-Hyok
    Jung, Doo-Yong
    Won, Chung-Yuen
    Lee, Byoung-Kuk
    Kim, Jin-Wook
    2009 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION, VOLS 1-6, 2009, : 711 - +
  • [22] A New Ken-Ken Puzzle Pattern Based Reconfiguration Technique for Maximum Power Extraction in Partial Shaded Solar PV Array
    Palpandian, Murugesan
    Winston, David Prince
    Kumar, Balachandran Praveen
    Kumar, Cherukuri Santhan
    Babu, Thanikanti Sudhakar
    Alhelou, Hassan Haes
    IEEE ACCESS, 2021, 9 : 65824 - 65837
  • [23] Performance Enhancement of a Partially Shaded Photovoltaic Array by Optimal Reconfiguration and Current Injection Schemes
    Vadivel, Srinivasan
    Boopthi, C. S.
    Ramasamy, Sridhar
    Ahsan, Mominul
    Haider, Julfikar
    Rodrigues, Eduardo M. G.
    ENERGIES, 2021, 14 (19)
  • [24] HYBRID ALGORITHM FOR TRACKING MAXIMUM POWER IN SOLAR PV ARRAY UNDER PARTIALLY SHADED CONDITION
    Vetrivelan, Balaji
    Kareem, Peer Fathima Abdul
    INTERNATIONAL JOURNAL OF POWER AND ENERGY SYSTEMS, 2019, 39 (03): : 166 - 176
  • [25] Differentiation of multiple maximum power points of partially shaded photovoltaic power generators
    Maki, Anssi
    Valkealahti, Seppo
    RENEWABLE ENERGY, 2014, 71 : 89 - 99
  • [26] A Global Maximum Power Point Tracking Algorithm for Photovoltaic Systems Under Partially Shaded Conditions Using Modified Maximum Power Trapezium Method
    Xu, Shungang
    Gao, Yuan
    Zhou, Guohua
    Mao, Guihua
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (01) : 370 - 380
  • [27] A fast maximum power point tracking method for photovoltaic arrays under partially shaded conditions
    Zhu, Xiaorong
    Liu, Shipeng
    Wang, Yi
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2016, 8 (02)
  • [28] Application of random search method for maximum power point tracking in partially shaded photovoltaic systems
    Sundareswaran, Kinattingal
    Peddapati, Sankar
    Palani, S.
    IET RENEWABLE POWER GENERATION, 2014, 8 (06) : 670 - 678
  • [29] Twisted Two-Step Arrangement for Maximum Power Extraction From a Partially Shaded PV Array
    Krishnan, Venkateswari Radha
    Blaabjerg, Frede
    Sangwongwanich, Ariya
    Natarajan, Rajasekar
    IEEE JOURNAL OF PHOTOVOLTAICS, 2022, 12 (03): : 871 - 879
  • [30] Maximum power point tracking in partially shaded photovoltaic systems using grasshopper optimization algorithm
    Tabar, Sadegh Mahmoodi
    Shahnazari, Mostafa
    Heshmati, Kamila
    IET RENEWABLE POWER GENERATION, 2023, 17 (02) : 389 - 399