Amenability of bounded automata groups on infinite alphabets

被引:0
|
作者
Reinke, Bernhard [1 ,2 ,3 ]
机构
[1] Aix Marseille Univ, Inst Math Marseille, UMR 7373, 163 Ave Luminy Case 901, F-13009 Marseille, France
[2] CRNS, 163 Ave Luminy Case 901, F-13009 Marseille, France
[3] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
基金
欧洲研究理事会;
关键词
D O I
10.1112/blms.13065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the action of groups generated by bounded activity automata with infinite alphabets on their orbital Schreier graphs. We introduce an amenability criterion for such groups based on the recurrence of the first-level action. This criterion is a natural extension of the result that all groups generated by bounded activity automata with finite alphabets are amenable. Our motivation comes from the investigation of iterated monodromy groups of entire transcendental functions in holomorphic dynamics.
引用
收藏
页码:2460 / 2471
页数:12
相关论文
共 50 条