A Novel Feature Encoding Scheme for Machine Learning Based Malware Detection Systems

被引:0
|
作者
Das, Vipin [1 ]
Nair, Binoy B. [2 ]
Thiruvengadathan, Rajagopalan [3 ]
机构
[1] Amrita Vishwa Vidyapeetham, Amrita Sch Artificial Intelligence, Coimbatore 641112, India
[2] Amrita Vishwa Vidyapeetham, Dept Elect & Commun Engn, Amrita Sch Engn, Coimbatore 641112, India
[3] Southern Utah Univ, Dept Engn & Technol, Cedar City, UT 84720 USA
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Malware; Codes; Encoding; Machine learning; Feature extraction; Grippers; Static analysis; Computer security; Intrusion detection; Classification algorithms; Detection algorithms; Cybersecurity; categorical encoding; intrusion detection; machine learning; malware classification; malware detection; NETWORK INTRUSION DETECTION; UNSW-NB15 DATA SET; IOT; ALGORITHM; MECHANISM; INTERNET; TAXONOMY; THINGS; SELECTION; DEFENSE;
D O I
10.1109/ACCESS.2024.3420080
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Malware detection is an ever-evolving area given that the strides in the detection capabilities being matched by radical attempts to bypass the detection. As the sophistication of malware continues to increase, the demand for innovative approaches to improve detection capabilities become paramount. Machine learning/Deep learning models are being increasingly used for Malware Detection, however one of the most important and frequently overlooked aspects of building such models is feature encoding. This research paper explores the importance of feature encoding to improve the efficiency of threat detection and proposes a novel entropy-based encoding scheme for the categorical features present in the data extracted from malicious inputs. The KDDCUP99, UNSW-NB15 and CIC-Evasive-PDFMal2022 datasets have been used to evaluate the effectiveness of the proposed encoding scheme. The results of the proposed encoding scheme are validated against seven other encoding schemes to ascertain the credibility and usability of the proposed scheme. The efficiency of the proposed system evaluated by applying different encoded versions of the datasets to train various machine learning models and determining the classification performance of the models on each dataset. The machine learning models trained with the proposed encoding scheme produced stable classification results and outperformed other encoding schemes when dimensionality reduction was applied on the data. The ensemble classifier trained using the proposed scheme was able to classify the data with an F1 score of 99.99% when the dimension-reduced entropy-encoded KDD Cup99 dataset was used to build the model. On the CIC-Evasive-PDFMal2022 dataset, the entropy encoding has exhibited a slightly improved classification parameters with the ensemble methods yielding a peak F1 score of 99.27%. We have also determined the feature importance values of the features present in the datasets to study the change in the contribution levels of the features when multiple categorical encoding schemes are applied upon the data.
引用
收藏
页码:91187 / 91216
页数:30
相关论文
共 50 条
  • [21] An Android Malware Detection System Based on Machine Learning
    Wen, Long
    Yu, Haiyang
    GREEN ENERGY AND SUSTAINABLE DEVELOPMENT I, 2017, 1864
  • [22] A Novel Medical Image Encryption Scheme Based on Deep Learning Feature Encoding and Decoding
    Long, Bofeng
    Chen, Zhong
    Liu, Tongzhe
    Wu, Ximei
    He, Chenchen
    Wang, Lujie
    IEEE ACCESS, 2024, 12 : 38382 - 38398
  • [23] A Survey of Malware Detection Techniques based on Machine Learning
    El Merabet, Hoda
    Hajraoui, Abderrahmane
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (01) : 366 - 373
  • [24] On the Robustness of Machine Learning Based Malware Detection Algorithms
    Hu, Weiwei
    Tan, Ying
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1435 - 1441
  • [25] A Novel Malware Analysis Framework for Malware Detection and Classification using Machine Learning Approach
    Sethi, Kamalakanta
    Chaudhary, Shankar Kumar
    Tripathy, Bata Krishan
    Bera, Padmalochan
    ICDCN'18: PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND NETWORKING, 2018,
  • [26] Towards an Understanding of the Misclassification Rates of Machine Learning-based Malware Detection Systems
    Alruhaily, Nada
    Bordbar, Behzad
    Chothia, Tom
    ICISSP: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2017, : 101 - 112
  • [27] An Exploratory Analysis of Feature Selection for Malware Detection with Simple Machine Learning Algorithms
    Rahman, Md Ashikur
    Islam, Syful
    Nugroho, Yusuf Sulistyo
    Al Irsyadi, Fatah Yasin
    Hossain, Md Javed
    JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, 2023, 19 (03) : 207 - 219
  • [28] A novel focus encoding scheme for addressee detection in multiparty interaction using machine learning algorithms
    Malik, Usman
    Barange, Mukesh
    Saunier, Julien
    Pauchet, Alexandre
    JOURNAL ON MULTIMODAL USER INTERFACES, 2021, 15 (02) : 175 - 188
  • [29] A novel focus encoding scheme for addressee detection in multiparty interaction using machine learning algorithms
    Usman Malik
    Mukesh Barange
    Julien Saunier
    Alexandre Pauchet
    Journal on Multimodal User Interfaces, 2021, 15 : 175 - 188
  • [30] DroidEncoder: Malware detection using auto-encoder based feature extractor and machine learning algorithms
    Bakir, Halit
    Bakir, Rezan
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110