Enhanced multimodal emotion recognition in healthcare analytics: A deep learning based model-level fusion approach

被引:3
|
作者
Islam, Md. Milon [1 ]
Nooruddin, Sheikh [1 ]
Karray, Fakhri [1 ,2 ]
Muhammad, Ghulam [3 ]
机构
[1] Univ Waterloo, Ctr Pattern Anal & Machine Intelligence, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[2] Mohamed bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11543, Saudi Arabia
基金
加拿大自然科学与工程研究理事会;
关键词
Multimodal emotion recognition; Depthwise separable convolutional neural; networks; Bi-directional long short-term memory; Soft attention; Healthcare analytics; CLASSIFICATION;
D O I
10.1016/j.bspc.2024.106241
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep learning techniques have drawn considerable interest in emotion recognition due to recent technological developments in healthcare analytics. Automatic patient emotion recognition can assist healthcare analytics by providing feedback to the stakeholders of competent healthcare about the conditions of the patients and their satisfaction levels. In this paper, we propose a novel model -level fusion technique based on deep learning for enhanced emotion recognition from multimodal signals to monitor patients in connected healthcare. The representative visual features from the video signals are extracted through the Depthwise Separable Convolution Neural Network, and the optimized temporal attributes are derived from the multiple physiological data utilizing Bi-directional Long Short -Term Memory. A soft attention method fused the high multimodal features obtained from the two data modalities to retrieve the most significant features by focusing on emotionally salient parts of the features. We exploited two face detection methods, Histogram of Oriented Gradients and Convolutional Neural Network -based face detector (ResNet-34), to observe the effects of facial features on emotion recognition. Lastly, extensive experimental evaluations have been conducted using the widely used Bio Vid Emo DB multimodal dataset to verify the performance of the proposed architecture. Experimental results show that the developed fusion architecture improved the accuracy of emotion recognition from multimodal signals and outperformed the performance of both state-of-the-art techniques and baseline methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Multimodal Deep Learning Model for Subject-Independent EEG-based Emotion Recognition
    Dharia, Shyamal Y.
    Valderrama, Camilo E.
    Camorlinga, Sergio G.
    2023 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE, 2023,
  • [22] Multimodal Biometric Fusion Model Based on Deep Learning
    Li, Zhuorong
    Tang, Yunqi
    Computer Engineering and Applications, 2023, 59 (07) : 180 - 189
  • [23] Deep Feature Extraction and Attention Fusion for Multimodal Emotion Recognition
    Yang, Zhiyi
    Li, Dahua
    Hou, Fazheng
    Song, Yu
    Gao, Qiang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (03) : 1526 - 1530
  • [24] DEEP MULTIMODAL LEARNING FOR EMOTION RECOGNITION IN SPOKEN LANGUAGE
    Gu, Yue
    Chen, Shuhong
    Marsic, Ivan
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 5079 - 5083
  • [25] Deep Imbalanced Learning for Multimodal Emotion Recognition in Conversations
    Meng, Tao
    Shou, Yuntao
    Ai, Wei
    Yin, Nan
    Li, Keqin
    IEEE Transactions on Artificial Intelligence, 2024, 5 (12): : 6472 - 6487
  • [26] Multimodal Arabic emotion recognition using deep learning
    Al Roken, Noora
    Barlas, Gerassimos
    SPEECH COMMUNICATION, 2023, 155
  • [27] Multimodal Emotion Recognition using Deep Learning Architectures
    Ranganathan, Hiranmayi
    Chakraborty, Shayok
    Panchanathan, Sethuraman
    2016 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2016), 2016,
  • [28] A multimodal fusion emotion recognition method based on multitask learning and attention mechanism
    Xie, Jinbao
    Wang, Jiyu
    Wang, Qingyan
    Yang, Dali
    Gu, Jinming
    Tang, Yongqiang
    Varatnitski, Yury I.
    NEUROCOMPUTING, 2023, 556
  • [29] Annotation Efficiency in Multimodal Emotion Recognition with Deep Learning
    Zhu, Lili
    Spachos, Petros
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 560 - 565
  • [30] Mathematical representation of emotion using multimodal recognition model with deep multitask learning
    Harata S.
    Sakuma T.
    Kato S.
    Harata, Seiichi (harata@katolab.nitech.ac.jp), 1600, Institute of Electrical Engineers of Japan (140): : 1343 - 1351