MAXIMUM CORRENTROPY KALMAN FILTER FOR ORIENTATION ESTIMATION WITH APPLICATION TO LIDAR INERTIAL ODOMETRY

被引:0
|
作者
Fakoorian, Seyed [1 ]
Palieri, Matteo [2 ,3 ]
Santamaria-Navarro, Angel [2 ]
Guaragnella, Cataldo [3 ]
Simon, Dan [1 ]
Agha-mohammadi, Ali-akbar [2 ]
机构
[1] Cleveland State Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44115 USA
[2] NASA, Calif Inst Technol, Jet Prop Lab, Pasadena, CA USA
[3] Polytech Univ Bari, Dept Elect & Informat Engn, Bari, Italy
关键词
ATTITUDE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate attitude estimation using low-cost sensors is an important capability to enable many robotic applications. In this paper, we present a method based on the concept of correntropy in Kalman filtering to estimate the 3D orientation of a rigid body using a low-cost inertial measurement unit (IMU). We then leverage the proposed attitude estimation framework to develop a LiDAR-Intertial Odometry (LIO) demonstrating improved localization accuracy with respect to traditional methods. This is of particular importance when the robot undergoes high-rate motions that typically exacerbate the issues associated with low-cost sensors. The proposed orientation estimation approach is first validated using the data coming from a low-cost IMU sensor. We further demonstrate the performance of the proposed LIO solution in a simulated robotic cave exploration scenario.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Diffusion Kalman filter by using maximum correntropy criterion
    Li, Wenling
    Xiong, Kai
    Liu, Yang
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 203 - 208
  • [22] Multi-Kernel Maximum Correntropy Kalman Filter
    Li, Shilei
    Shi, Dawei
    Zou, Wulin
    Shi, Ling
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1490 - 1495
  • [23] Extended Kalman Filter under Maximum Correntropy Criterion
    Liu, Xi
    Qu, Hua
    Zhao, Jihong
    Chen, Badong
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1733 - 1737
  • [24] A High-Precision LiDAR-Inertial Odometry via Kalman Filter and Factor Graph Optimization
    Tang, Jiaqiao
    Zhang, Xudong
    Zou, Yuan
    Li, Yuanyuan
    Du, Guodong
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 11218 - 11231
  • [25] Unscented Kalman Filter on Lie Groups for Visual Inertial Odometry
    Brossard, Martin
    Bonnabel, Silvere
    Barrau, Axel
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 649 - 655
  • [26] Maximum correntropy polynomial chaos Kalman filter for underwater navigation
    Singh, Rohit Kumar
    Saha, Joydeb
    Bhaumik, Shovan
    DIGITAL SIGNAL PROCESSING, 2024, 155
  • [27] Towards Robust State Estimation by Boosting the Maximum Correntropy Criterion Kalman Filter with Adaptive Behaviors
    Fakoorian, Seyed
    Santamaria-Navarro, Angel
    Lopez, Brett T.
    Simon, Dan
    Agha-mohammadi, Ali-akbar
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) : 5469 - 5476
  • [28] Interacting Multiple Model Based on Maximum Correntropy Kalman Filter
    Fan, Xuxiang
    Wang, Gang
    Han, Jiachen
    Wang, Yinghui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (08) : 3017 - 3021
  • [29] Joint Estimation of Vehicle State and Parameter Based on Maximum Correntropy Adaptive Unscented Kalman Filter
    Zhang, Feng
    Feng, Jingan
    Qi, Dengliang
    Liu, Ya
    Shao, Wenping
    Qi, Jiaao
    Lin, Yuangang
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (06) : 1553 - 1566
  • [30] Maximum Correntropy with Variable Center Unscented Kalman Filter for Robust Power System State Estimation
    Sun, Zhenglong
    Liu, Chuanlin
    Peng, Siyuan
    ENTROPY, 2022, 24 (04)