Design and analysis of dual working area micro-hotplate based on thermal crosstalk

被引:0
|
作者
Yang, Youpeng [1 ]
Wei, Guangfen [1 ]
Jiao, Shasha [1 ]
He, Aixiang [1 ]
Lin, Zhonghai [1 ]
机构
[1] Shandong Technol & Business Univ, Sch Informat & Elect Engn, Binhai Rd, Yantai 264005, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1007/s00542-024-05721-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Micro-hotplates have provided the possibilities of miniaturization, low power consumption, and high integration for widespread application in MEMS sensors, such as the MEMS-based metal oxide gas sensors. However, thermal crosstalk among micro-heating areas has greatly restricted the design of a micro-hotplate. Although the issue of thermal crosstalk is annoying between independent working areas, it can reduce power consumption to a certain extent. This paper proposed a dual working area micro-hotplate based on thermal crosstalk through the foundation of an electro-thermal analysis model. It especially proposes a strategy of introducing optimized parameters from a single working area to a dual working area. Besides, evaluation for thermal crosstalk was achieved by setting the temperature of one working area as constant and monitoring the power of the other working area when it reaches a certain temperature. The results indicated that the designed dual working area micro-hotplate can save at least a quarter of the heating power compared with the single working area micro-hotplate at the same working temperature of 300 degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>\circ \textrm{C}$$\end{document} and other same parameter settings. Within the acceptable limits of mechanical deformation, the heating efficiency of the micro-hotplate is improved from 4.10 mW/(mm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>2$$\end{document}.degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>\circ \textrm{C}$$\end{document}) to 2.99 mW/(mm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>2$$\end{document}degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>\circ \textrm{C}$$\end{document}). It was demonstrated that the introduction of thermal crosstalk can significantly reduce the power consumption of the micro-hotplate, providing a viable solution for enhancing the properties of MOX gas sensor array.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Thermal analysis and measurement of micro-hotplate
    [J]. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2001, 22 (02):
  • [2] Thermal analysis and design of a micro-hotplate for sisubstrated micro-structural gas sensor
    Tao, Chunmin
    Yin, Chenbo
    He, Maoxian
    Tu, Shandong
    [J]. 2008 3RD IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1-3, 2008, : 284 - +
  • [3] Thermal analysis of a constant temperature pirani gauge based on micro-hotplate
    Zhang, Feng T.
    Tang, Zhen A.
    Yu, Jun.
    Jin, Ren C.
    [J]. 2006 1ST IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1-3, 2006, : 1072 - +
  • [4] Thermal analysis and design of a micro-hotplate for integrated gas-sensor applications
    Fung, SKH
    Tang, ZN
    Chan, PCH
    Sin, JKO
    Cheung, PW
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 1996, 54 (1-3) : 482 - 487
  • [5] Constant temperature thermal vacuum sensor based on micro-hotplate
    Electronic Engineering Institute, Chinese Academy of Engineering Physics, Mianyang 621900, China
    不详
    [J]. Guangxue Jingmi Gongcheng, 2008, 7 (1253-1257):
  • [6] Design and simulations of SOICMOS micro-hotplate gas sensors
    Udrea, F
    Gardner, JW
    Setiadi, D
    Covington, JA
    Dogaru, T
    Lua, CC
    Milne, WI
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2001, 78 (1-3) : 180 - 190
  • [7] Thermal crosstalk of micro hotplate arrays
    Department of Electronics Engineering, Dalian University of Technology, Dalian 116023, China
    不详
    不详
    [J]. Pan Tao Ti Hsueh Pao, 2008, 8 (1581-1584):
  • [8] A Micro-Hotplate for MEMS Based Gas Sensor
    Niu, Gaoqiang
    He, Lingxiang
    Yang, Zhitao
    Zhao, Changhui
    Gong, Hiuming
    He, Wei
    Wang, Fei
    [J]. 2018 19TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY (ICEPT), 2018, : 749 - 752
  • [9] Analysis of Coupled Electro-thermal-mechanical of Micro Gas Pressure Sensor Based on Micro-hotplate Technology
    Jin, Rencheng
    Zhang, Wujin
    Tang, Zhenan
    Wang, Jiaqi
    Shao, Mingliang
    [J]. MICRO AND NANO TECHNOLOGY: 1ST INTERNATIONAL CONFERENCE OF CHINESE SOCIETY OF MICRO/NANO TECHNOLOGY(CSMNT), 2009, 60-61 : 119 - +
  • [10] Temperature measurement based on radialization power for micro-hotplate
    张彤
    漆奇
    刘奎学
    刘丽
    张蕾
    徐宝琨
    [J]. Transactions of Nonferrous Metals Society of China, 2006, (S2) : 780 - 784