Topological oscillated edge states in trimer lattices

被引:1
|
作者
Jiang, T. ao [1 ]
Zhang, Jin [1 ]
Xin, Guoguo [1 ]
Dang, Yu [1 ]
Iang, Anli [1 ]
Qi, Xinyuan [1 ]
Zhang, Wenjing [1 ]
Ang, Zhanying [1 ]
机构
[1] Northwest Univ, Sch Phys, Xian 710127, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 11期
基金
中国国家自然科学基金;
关键词
PHASE; SOLITONS;
D O I
10.1364/OE.522432
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate a 1D trimer optical lattice model. Two kinds of topological oscillating optical transmission phenomena at edges are shown. The exact and the approximate solutions of the system's edge states are obtained with and without the inversion symmetry for this system respectively. Based on the solutions, the existence and the periods of the oscillations can be controlled arbitrarily. Moreover, in a system without inversion symmetry, controlling the incident beam can eliminate both types of oscillations, resulting in a more stable edge state compared to the one with inversion symmetry. This prompts us to reconsider topological systems under symmetry protection.
引用
收藏
页码:18605 / 18617
页数:13
相关论文
共 50 条
  • [31] Realization of edge and corner states in photonic crystals with kagome lattices through topological insulator generators
    He, Yi-Han
    Gao, Yong-Feng
    He, Yue
    Qi, Xiao-Fei
    Si, Jing-Qi
    Yang, Ming
    Zhou, Shu-Yang
    OPTICS AND LASER TECHNOLOGY, 2023, 161
  • [32] Identifying topological edge states in 2D optical lattices using light scattering
    Nathan Goldman
    Jérôme Beugnon
    Fabrice Gerbier
    The European Physical Journal Special Topics, 2013, 217 : 135 - 152
  • [33] Edge-to-edge topological spectral transfer in diamond photonic lattices
    Caceres-Aravena, Gabriel
    Real, Bastian
    Guzman-Silva, Diego
    Vildoso, Paloma
    Salinas, Ignacio
    Amo, Alberto
    Ozawa, Tomoki
    Vicencio, Rodrigo A.
    APL PHOTONICS, 2023, 8 (08)
  • [34] Topological number of edge states
    Hashimoto, Koji
    Kimura, Taro
    PHYSICAL REVIEW B, 2016, 93 (19)
  • [35] Delocalization of topological edge states
    Zhu, Weiwei
    Teo, Wei Xin
    Li, Linhu
    Gong, Jiangbin
    PHYSICAL REVIEW B, 2021, 103 (19)
  • [36] Edge states in polariton honeycomb lattices
    Milicevic, M.
    Ozawa, T.
    Andreakou, P.
    Carusotto, I.
    Jacqmin, T.
    Galopin, E.
    Lemaitre, A.
    Le Gratiet, L.
    Sagnes, I.
    Bloch, J.
    Amo, A.
    2D MATERIALS, 2015, 2 (03):
  • [37] Control of multimodal topological edge modes in magnetoelastic lattices
    Lee, Taehwa
    Manda, Bertin Many
    Li, Xiaopeng
    Yu, Ziqi
    Theocharis, Georgios
    Daraio, Chiara
    PHYSICAL REVIEW APPLIED, 2024, 21 (02)
  • [38] Polarized elastic topological states in hexagonal lattices
    Hong, Fang
    Zhang, Kai
    Qi, Liyuan
    Ding, Bin
    Wang, Tingting
    Peng, Haijun
    Deng, Zichen
    APPLIED MATHEMATICAL MODELLING, 2025, 139
  • [39] Topological states in amorphous magnetic photonic lattices
    Yang, Bing
    Zhang, Hongfang
    Wu, Tong
    Dong, Ruixin
    Yan, Xunling
    Zhang, Xiangdong
    PHYSICAL REVIEW B, 2019, 99 (04)
  • [40] Observation of novel topological states in hyperbolic lattices
    Weixuan Zhang
    Hao Yuan
    Na Sun
    Houjun Sun
    Xiangdong Zhang
    Nature Communications, 13