Extending the Breast Cancer Surveillance Consortium Model of Invasive Breast Cancer

被引:2
|
作者
Gard, Charlotte C. [1 ]
Tice, Jeffrey A. [2 ]
Miglioretti, Diana L. [3 ,4 ]
Sprague, Brian L. [5 ,6 ]
Bissell, Michael C. S. [3 ]
Henderson, Louise M. [7 ]
Kerlikowske, Karla [8 ,9 ,10 ]
机构
[1] New Mexico State Univ, Dept Econ Appl Stat & Int Business, Las Cruces, NM USA
[2] Univ Calif San Francisco, Dept Med, Div Gen Internal Med, 1545 Divisadero St,Ste 309, San Francisco 94143, CA USA
[3] Univ Calif Davis, Davis, CA USA
[4] Kaiser Permanente Washington Hlth Res Inst, Seattle, WA USA
[5] Univ Vermont, Dept Surg, Canc Ctr, Burlington, VT USA
[6] Univ Vermont, Canc Ctr, Dept Radiol, Burlington, VT USA
[7] Univ N Carolina, Dept Radiol, Chapel Hill, NC USA
[8] Univ Calif San Francisco, Dept Vet Affairs, Gen Internal Med Sect, San Francisco, CA USA
[9] Univ Calif San Francisco, Dept Med, San Francisco, CA USA
[10] Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA USA
关键词
RISK PREDICTION; FAMILY-HISTORY; WOMEN; DENSITY; PERFORMANCE; VALIDATION;
D O I
10.1200/JCO.22.02470
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PURPOSEWe extended the Breast Cancer Surveillance Consortium (BCSC) version 2 (v2) model of invasive breast cancer risk to include BMI, extended family history of breast cancer, and age at first live birth (version 3 [v3]) to better inform appropriate breast cancer prevention therapies and risk-based screening.METHODSWe used Cox proportional hazards regression to estimate the age- and race- and ethnicity-specific relative hazards for family history of breast cancer, breast density, history of benign breast biopsy, BMI, and age at first live birth for invasive breast cancer in the BCSC cohort. We evaluated calibration using the ratio of expected-to-observed (E/O) invasive breast cancers in the cohort and discrimination using the area under the receiver operating characteristic curve (AUROC).RESULTSWe analyzed data from 1,455,493 women age 35-79 years without a history of breast cancer. During a mean follow-up of 7.3 years, 30,266 women were diagnosed with invasive breast cancer. The BCSC v3 model had an E/O of 1.03 (95% CI, 1.01 to 1.04) and an AUROC of 0.646 for 5-year risk. Compared with the v2 model, discrimination of the v3 model improved most in Asian, White, and Black women. Among women with a BMI of 30.0-34.9 kg/m2, the true-positive rate in women with an estimated 5-year risk of 3% or higher increased from 10.0% (v2) to 19.8% (v3) and the improvement was greater among women with a BMI of >= 35 kg/m2 (7.6%-19.8%).CONCLUSIONThe BCSC v3 model updates an already well-calibrated and validated breast cancer risk assessment tool to include additional important risk factors. The inclusion of BMI was associated with the largest improvement in estimated risk for individual women. Adding BMI and extended family history to the BCSC model improved discrimination and the true positive rate.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] CGH of invasive breast cancer
    Shoker B.
    [J]. Breast Cancer Research, 2 (1)
  • [42] High-risk breast cancer surveillance with MRI: 10-year experience from the German consortium for hereditary breast and ovarian cancer
    Bick, Ulrich
    Engel, Christoph
    Krug, Barbara
    Heindel, Walter
    Fallenberg, Eva M.
    Rhiem, Kerstin
    Maintz, David
    Golatta, Michael
    Speiser, Dorothee
    Rjosk-Dendorfer, Dorothea
    Laemmer-Skarke, Irina
    Dietzel, Frederic
    Schaefer, Karl Werner Fritz
    Leinert, Elena
    Weigel, Stefanie
    Sauer, Stephanie
    Pertschy, Stefanie
    Hofmockel, Thomas
    Hagert-Winkler, Anne
    Kast, Karin
    Quante, Anne
    Meindl, Alfons
    Kiechle, Marion
    Loeffler, Markus
    Schmutzler, Rita K.
    Blohmer, Jens-Uwe
    Horn, Denise
    Varon-Mateeva, Raymonda
    Huebbel, Verena
    Herold, Natalie
    Puesken, Michael
    Wimberger, Pauline
    Meisel, Cornelia
    Keller, Katja
    Antoch, Gerald
    Vesper, Anne-Sophie
    Fehm, Tanja N.
    Schlegelberger, Brigitte
    Auber, Bernd
    Wallaschek, Hannah
    Heil, Joerg
    Schott, Sarah
    Dikow, Nicola
    Mundhenke, Christoph
    Arnold, Norbert
    Caliebe, Almuth
    Briest, Susanne
    Lemke, Johannes
    Gril, Sabine
    Pfeifer, Katharina
    [J]. BREAST CANCER RESEARCH AND TREATMENT, 2019, 175 (01) : 217 - 228
  • [43] High-risk breast cancer surveillance with MRI: 10-year experience from the German consortium for hereditary breast and ovarian cancer
    Ulrich Bick
    Christoph Engel
    Barbara Krug
    Walter Heindel
    Eva M. Fallenberg
    Kerstin Rhiem
    David Maintz
    Michael Golatta
    Dorothee Speiser
    Dorothea Rjosk-Dendorfer
    Irina Lämmer-Skarke
    Frederic Dietzel
    Karl Werner Fritz Schäfer
    Elena Leinert
    Stefanie Weigel
    Stephanie Sauer
    Stefanie Pertschy
    Thomas Hofmockel
    Anne Hagert-Winkler
    Karin Kast
    Anne Quante
    Alfons Meindl
    Marion Kiechle
    Markus Loeffler
    Rita K. Schmutzler
    [J]. Breast Cancer Research and Treatment, 2019, 175 : 217 - 228
  • [44] Adherence to Guidelines for Breast Surveillance in Breast Cancer Survivors
    Ruddy, Kathryn J.
    Sangaralingham, Lindsey
    Freedman, Rachel A.
    Mougalian, Sarah
    Neuman, Heather
    Greenberg, Caprice
    Jemal, Ahmedin
    Duma, Narjust
    Haddad, Tufia C.
    Lemaine, Valerie
    Ghosh, Karthik
    Hieken, Tina J.
    Hunt, Katie
    Vachon, Celine
    Gross, Cary
    Shah, Nilay D.
    [J]. JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2018, 16 (05): : 526 - 534
  • [45] Subtypes of screen detected invasive breast cancer and symptomatic invasive breast cancer and their impact on survival
    Kobayashi, N.
    Hikichi, M.
    Miyajima, S.
    Utsumi, T.
    [J]. CANCER RESEARCH, 2012, 72
  • [46] New Screening Performance Metrics for Digital Breast Tomosynthesis in US Community Practice from the Breast Cancer Surveillance Consortium
    Lee, Cindy S.
    Moy, Linda
    [J]. RADIOLOGY, 2023, 307 (04)
  • [47] A prospective surveillance model for physical rehabilitation of women with breast cancer
    Stubblefield, Michael D.
    McNeely, Margaret L.
    Alfano, Catherine M.
    Mayer, Deborah K.
    [J]. CANCER, 2012, 118 : 2250 - 2260
  • [48] Magnetic resonance imaging of the breast improves detection of invasive cancer, preinvasive cancer, and premalignant lesions during surveillance of women at high risk for breast cancer
    Riedl, Christopher C.
    Ponhold, Lothar
    Floery, Daniel
    Weber, Michael
    Kroiss, Regina
    Wagner, Teresa
    Fuchsjaeger, Michael
    Helbich, Thomas H.
    [J]. CLINICAL CANCER RESEARCH, 2007, 13 (20) : 6144 - 6152
  • [49] Interactions between breast cancer susceptibility loci and menopausal hormone therapy in relationship to breast cancer in the Breast and Prostate Cancer Cohort Consortium
    Gaudet, Mia M.
    Barrdahl, Myrto
    Lindstroem, Sara
    Travis, Ruth C.
    Auer, Paul L.
    Buring, Julie E.
    Chanock, Stephen J.
    Eliassen, A. Heather
    Gapstur, Susan M.
    Giles, Graham G.
    Gunter, Marc
    Haiman, Christopher
    Hunter, David J.
    Joshi, Amit D.
    Kaaks, Rudolf
    Khaw, Kay-Tee
    Lee, I-Min
    Le Marchand, Loic
    Milne, Roger L.
    Peeters, Petra H. M.
    Sund, Malin
    Tamimi, Rulla
    Trichopoulou, Antonia
    Weiderpass, Elisabete
    Yang, Xiaohong R.
    Prentice, Ross L.
    Feigelson, Heather Spencer
    Canzian, Federico
    Kraft, Peter
    [J]. BREAST CANCER RESEARCH AND TREATMENT, 2016, 155 (03) : 531 - 540
  • [50] Primary amyloidosis of the breast associated with invasive breast cancer
    White, JD
    Marshall, DAS
    Seywright, MM
    Evans, TRJ
    [J]. ONCOLOGY REPORTS, 2004, 11 (04) : 761 - 763