High-performance Schottky-barrier field-effect transistors based on two-dimensional GaN with Ag or Au contacts

被引:0
|
作者
Xie, Hai-Qing [1 ]
Liu, Jing-Shuo [1 ]
Cui, Kai-Yue [1 ]
Wang, Xin-Yue [1 ]
Fan, Zhi-Qiang [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Hunan Prov Key Lab Flexible Elect Mat Genome Engn, Changsha 410114, Peoples R China
来源
MICRO AND NANOSTRUCTURES | 2024年 / 191卷
基金
中国国家自然科学基金;
关键词
Two-dimensional GaN; Field-effect transistor; Ballistic transport; Density functional theory; SEMICONDUCTORS; IMPACT;
D O I
10.1016/j.micrna.2024.207863
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The performance of two-dimensional (2D) monolayer GaN Schottky barrier field effect transistors (SBFETs) with four different metals (Ag, Au, Al, and Pt) as electrodes were studied by using ab initio simulations. The N-type Schottky contact is formed on Ag-GaN, Au-GaN, and Pt-GaN, characterized by electron Schottky barrier heights (SBH) of 0.6, 0.5, and 0.38 eV, respectively. Whereas, Al-GaN contact formed P-type Schottky contact with hole SBH of 1.42 eV. The 5.1 nm GaN SBFETs with four metal electrodes all could overcome the short-channel effect. Additionally, GaN SBFETs with Ag and Au electrodes have excellent performance, whose ON-currents are 1151.1 mu A/mu m and 1258.9 mu A/mu m, respectively. They could satisfy the demands of International Technology Roadmap for Semiconductors for high-performance transistor. Furthermore, research indicates that the device's current increases with increasing temperature. Notably, under the constant bias and gate voltage, the current is unaffected by temperature variations between the left and right electrodes.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Analytic calculation of the gate edge capacitance for schottky-barrier field-effect transistors and metallization of contacts on gallium arsenide
    Adamov, YF
    RADIOTEKHNIKA I ELEKTRONIKA, 1996, 41 (07): : 890 - 894
  • [22] Modeling a Schottky-barrier carbon nanotube field-effect transistor with ferromagnetic contacts
    Krompiewski, S.
    NANOTECHNOLOGY, 2007, 18 (48)
  • [23] CW OSCILLATION CHARACTERISTICS OF GAAS SCHOTTKY-BARRIER GATE FIELD-EFFECT TRANSISTORS
    MAEDA, M
    TAKAHASHI, S
    KODERA, H
    PROCEEDINGS OF THE IEEE, 1975, 63 (02) : 320 - 321
  • [24] ULTRAWIDEBAND AMPLIFIER WITH DISTRIBUTED GAIN USING SCHOTTKY-BARRIER FIELD-EFFECT TRANSISTORS
    KOROTAEV, VM
    KUZMIN, AA
    VAVILIN, VN
    NEVOLIN, AR
    GYUNTER, VY
    KORSAKOV, SV
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1990, 33 (03) : 611 - 613
  • [25] Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors
    Appenzeller, J
    Knoch, J
    Radosavljevic, M
    Avouris, P
    PHYSICAL REVIEW LETTERS, 2004, 92 (22) : 226802 - 1
  • [26] NONLOCAL AND DIFFUSION EFFECTS IN SUBMICRON SCHOTTKY-BARRIER GATE FIELD-EFFECT TRANSISTORS
    KALFA, AA
    PASHKOVSKIJ, AB
    TAGER, AS
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1985, 28 (12): : 1583 - 1589
  • [27] PREFERENTIAL DIFFUSION AND ORIENTATION EFFECTS OF SCHOTTKY-BARRIER GAAS FIELD-EFFECT TRANSISTORS
    MCLAUGHLIN, KL
    BIRRITTELLA, MS
    APPLIED PHYSICS LETTERS, 1984, 44 (02) : 252 - 254
  • [28] Multiscale modeling of nanowire-based Schottky-barrier field-effect transistors for sensor applications
    Nozaki, D.
    Kunstmann, J.
    Zoergiebel, F.
    Weber, W. M.
    Mikolajick, T.
    Cuniberti, G.
    NANOTECHNOLOGY, 2011, 22 (32)
  • [29] ANALYSIS OF MULTISTAGE MICROWAVE-POWER AMPLIFIERS BASED ON FIELD-EFFECT TRANSISTORS WITH A SCHOTTKY-BARRIER
    SHVESHKEYEV, PA
    FOMIN, NN
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1990, 45 (11) : 140 - 143
  • [30] High-performance photocurrent generation from two-dimensional WS2 field-effect transistors
    Lee, Seung Hwan
    Lee, Daeyeong
    Hwang, Wan Sik
    Hwang, Euyheon
    Jena, Debdeep
    Yoo, Won Jong
    APPLIED PHYSICS LETTERS, 2014, 104 (19)