Machine and Deep Learning Methods for Predicting Immune Checkpoint Blockade Response

被引:0
|
作者
Ho, Danliang [1 ]
Motani, Mehul [2 ]
机构
[1] Natl Univ Singapore, NUS Grad Sch, Integrat Sci & Engn Programme, Singapore, Singapore
[2] Natl Univ Singapore, Integrat Sci & Engn Programme, Dept Elect & Comp Engn,Inst Data Sci, Coll Design & Engn,1 Inst Hlth,Inst Digital Med W, Singapore, Singapore
来源
关键词
immunotherapy; deep learning; tabular data;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Immune checkpoint blockade (ICB) therapy has improved treatment options in various cancer malignancies and holds promise for increasing the overall survival of treated patients. However, only a small proportion of patients benefit from ICB treatment. Furthermore, ICB therapy has been known to induce adverse autoimmunity reactions in certain patients. These two reasons motivate the clinical need to identify factors that predict a patient's response to ICB treatment. In our study, we developed several machine and deep learning-based models to predict response to ICB treatment, using a real-world tabular dataset across sixteen cancer types. We showed that our best model CB16, which is based on gradient boosting, outperforms all-known published results for this task, with sensitivity and specificity scores of 80.6% and 78.8% respectively. Our model also offers insights to clinical interpretability through the use of the SHAP explanation framework, which are consistent with known important predictors. Next, in order to see if deep learning can improve performance, we propose a methodology for the design of deep neural networks that addresses the lack of spatial and temporal structure in tabular data. Our approach is based on a combination of learning ordered representations and ensembling techniques. We show that, for the ICB prediction problem, current SOTA deep-learning architectures such as TabNet and Tab-Transformer do not perform well while our method achieves good performance. Our method achieves an F1 score 12.4 percentage points beyond that of Tab-Transformer, and sensitivity and specificity scores of 77.3% and 62.2% respectively. Through our work, we hope to improve the task of predicting ICB response, and contribute towards the creation of high-performance and interpretable AI models for real-world tabular data.
引用
收藏
页码:512 / 529
页数:18
相关论文
共 50 条
  • [41] A method for predicting drugs that can boost the efficacy of immune checkpoint blockade
    Xia, Yun
    Li, Xin
    Bie, Nana
    Pan, Wen
    Miao, Ya-Ru
    Yang, Mei
    Gao, Yan
    Chen, Chuang
    Liu, Hanqing
    Gan, Lu
    Guo, An-Yuan
    NATURE IMMUNOLOGY, 2024, 25 (04) : 659 - 670
  • [42] A method for predicting drugs that can boost the efficacy of immune checkpoint blockade
    Yun Xia
    Xin Li
    Nana Bie
    Wen Pan
    Ya-Ru Miao
    Mei Yang
    Yan Gao
    Chuang Chen
    Hanqing Liu
    Lu Gan
    An-Yuan Guo
    Nature Immunology, 2024, 25 : 659 - 670
  • [43] DYNAMIC MONITORING OF RESPONSE TO IMMUNE CHECKPOINT BLOCKADE THROUGH DEEP-LEARNING EMPOWERED ULTRA-SENSITIVE LIQUID BIOPSY IN MELANOMA
    Widman, Adam
    Khamnei, Cole
    Bass, Jake
    Liao, Will
    Shah, Minita
    Robine, Nicolas
    Wolchok, Jedd
    Callahan, Margaret
    Landau, Dan
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 : A18 - A20
  • [44] Deep learning for predicting the risk of immune checkpoint inhibitor-related pneumonitis in lung cancer
    Cheng, M.
    Lin, R.
    Bai, N.
    Zhang, Y.
    Wang, H.
    Guo, M.
    Duan, X.
    Zheng, J.
    Qiu, Z.
    Zhao, Y.
    CLINICAL RADIOLOGY, 2023, 78 (05) : e377 - e385
  • [45] Response, Resistance Mechanisms, and Biomarkers for Radiation and Immune Checkpoint Blockade
    Minn, A. J.
    Christina, T. S. V.
    Rech, A. J.
    Maity, A.
    Rengan, R.
    Pauken, K. E.
    Stelekati, E.
    Benci, J. L.
    Odorizzi, P. M.
    Amaravadi, R. K.
    Schuchter, L. M.
    Ishwaran, H.
    Mick, R.
    Pryma, D. A.
    Xu, X.
    Feldman, M. D.
    Gangadhar, T. C.
    Hahn, S. M.
    Wherry, E. J.
    Vonderheide, R. H.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2015, 93 (03): : S3 - S3
  • [46] Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas
    Katrin Aslan
    Verena Turco
    Jens Blobner
    Jana K. Sonner
    Anna Rita Liuzzi
    Nicolás Gonzalo Núñez
    Donatella De Feo
    Philipp Kickingereder
    Manuel Fischer
    Ed Green
    Ahmed Sadik
    Mirco Friedrich
    Khwab Sanghvi
    Michael Kilian
    Frederik Cichon
    Lara Wolf
    Kristine Jähne
    Anna von Landenberg
    Lukas Bunse
    Felix Sahm
    Daniel Schrimpf
    Jochen Meyer
    Allen Alexander
    Gianluca Brugnara
    Ralph Röth
    Kira Pfleiderer
    Beate Niesler
    Andreas von Deimling
    Christiane Opitz
    Michael O. Breckwoldt
    Sabine Heiland
    Martin Bendszus
    Wolfgang Wick
    Burkhard Becher
    Michael Platten
    Nature Communications, 11
  • [47] Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas
    Aslan, Katrin
    Turco, Verena
    Blobner, Jens
    Sonner, Jana K.
    Liuzzi, Anna Rita
    Nunez, Nicolas Gonzalo
    De Feo, Donatella
    Kickingereder, Philipp
    Fischer, Manuel
    Green, Ed
    Sadik, Ahmed
    Friedrich, Mirco
    Sanghvi, Khwab
    Kilian, Michael
    Cichon, Frederik
    Wolf, Lara
    Jaehne, Kristine
    von Landenberg, Anna
    Bunse, Lukas
    Sahm, Felix
    Schrimpf, Daniel
    Meyer, Jochen
    Alexander, Allen
    Brugnara, Gianluca
    Roeth, Ralph
    Pfleiderer, Kira
    Niesler, Beate
    von Deimling, Andreas
    Opitz, Christiane
    Breckwoldt, Michael O.
    Heiland, Sabine
    Bendszus, Martin
    Wick, Wolfgang
    Becher, Burkhard
    Platten, Michael
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [48] Subsets of interferon signaling and response to immune checkpoint blockade.
    Lee, Daniel
    Horowitch, Brooke
    Ding, Min
    Martinez-Morilla, Sandra
    Aung, Thazin Nwe
    Ouerghi, Feriel
    Wang, Xueting
    Wei, Wei
    Damsky, William
    Sznol, Mario
    Kluger, Harriet M.
    Rimm, David L.
    Ishizuka, Jeffrey Joseph
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [49] Epigenetic changes in T cells in response to immune checkpoint blockade
    Goswami, Sangeeta
    Chen, Jianfeng
    Zhao, Hao
    Zhang, Xuejun
    Sharma, Padmanee
    CANCER RESEARCH, 2016, 76
  • [50] Towards In Silico Prediction of the Immune-Checkpoint Blockade Response
    Chen, Ke
    Ye, Hao
    Lu, Xiao-jie
    Sun, Beicheng
    Liu, Qi
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2017, 38 (12) : 1041 - 1051