ON DYNAMICS OF A SIXTH-ORDER MULTIPLE-ROOT FINDER FOR NONLINEAR EQUATIONS

被引:0
|
作者
Geum, Young hee [1 ]
机构
[1] Dankook Univ, Dept Math, Cheonan, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Nonlinear equation; multiple root; conjugacy map; parameter space; 4TH-ORDER FAMILY;
D O I
10.14317/jami.2024.213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. A family of sixth-order multiple-root solver have been developed and the special case of weight function is investigated. The dynamical analysis of selected iterative schemes with uniparametric polynomial weight function are studied using Mo<spacing diaeresis>bius conjugacy map applied to the form ((z - A)(z - B))(m) and the stability surfaces of the strange fixed points for the conjugacy map are displayed. The numerical results are shown through various parameter spaces.
引用
收藏
页码:213 / 221
页数:9
相关论文
共 50 条
  • [1] On a sixth-order solver for multiple roots of nonlinear equations
    Geum, Young Hee
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (02): : 710 - 720
  • [2] A new sixth-order scheme for nonlinear equations
    Chun, Changbum
    Neta, Beny
    APPLIED MATHEMATICS LETTERS, 2012, 25 (02) : 185 - 189
  • [3] A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points
    Geum, Young Hee
    Kim, Young Ik
    Neta, Beny
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 283 : 120 - 140
  • [4] ON THE INSTABILITY OF CERTAIN SIXTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS
    Tunc, Cemil
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [5] Family of fourth-order optimal classes for solving multiple-root nonlinear equations
    Francisco I. Chicharro
    Neus Garrido
    Julissa H. Jerezano
    Daniel Pérez-Palau
    Journal of Mathematical Chemistry, 2023, 61 : 736 - 760
  • [6] CMMSE: Family of fourth-order optimal classes for solving multiple-root nonlinear equations
    Chicharro, Francisco, I
    Garrido, Neus
    Jerezano, Julissa H.
    Perez-Palau, Daniel
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (04) : 736 - 760
  • [7] A sixth-order central WENO scheme for nonlinear degenerate parabolic equations
    Rathan, Samala
    Gu, Jiaxi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [8] STABILITY OF SIXTH-ORDER NONLINEAR SYSTEM
    SINHA, ASC
    INFORMATION AND CONTROL, 1971, 19 (04): : 368 - &
  • [9] A new iterative method with sixth-order convergence for solving nonlinear equations
    Li, Han
    AUTOMATIC MANUFACTURING SYSTEMS II, PTS 1 AND 2, 2012, 542-543 : 1019 - 1022
  • [10] Sixth-order Cahn-Hilliard equations with singular nonlinear terms
    Miranville, Alain
    APPLICABLE ANALYSIS, 2015, 94 (10) : 2133 - 2146