Chromatin regulates alternative polyadenylation via the RNA polymerase II elongation rate

被引:2
|
作者
Geisberg, Joseph, V [1 ]
Moqtaderi, Zarmik [1 ]
Struhl, Kevin [1 ]
机构
[1] Harvard Med Sch, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
alternative polyadenylation; chromatin; RNA polymerase; transcription elongation; histone chaperones; PROMOTES TRANSCRIPTION TERMINATION; NUCLEOSOME DEPLETION; INITIATION; CLEAVAGE; COMPLEX; YEAST; SPT6; FIDELITY; REVEALS; HETEROGENEITY;
D O I
10.1073/pnas.2405827121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The RNA polymerase II (Pol II) elongation rate influences poly(A) site selection, with slow and fast Pol II derivatives causing upstream and downstream shifts, respectively, in poly(A) site utilization. In yeast, depletion of either of the histone chaperones FACT or Spt6 causes an upstream shift of poly(A) site use that strongly resembles the poly(A) profiles of slow Pol II mutant strains. Like slow Pol II mutant strains, FACT - and Spt6 - depleted cells exhibit Pol II processivity defects, indicating that both Spt6 and FACT stimulate the Pol II elongation rate. Poly(A) profiles of some genes show atypical downstream shifts; this subset of genes overlaps well for FACT - or Spt6 - depleted strains but is different from the atypical genes in Pol II speed mutant strains. In contrast, depletion of histone H3 or H4 causes a downstream shift of poly(A) sites for most genes, indicating that nucleosomes inhibit the Pol II elongation rate in vivo. Thus, chromatin - based control of the Pol II elongation rate is a potential mechanism, distinct from direct effects on the cleavage/polyadenylation machinery, to regulate alternative polyadenylation in response to genetic or environmental changes.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation
    Close, Pierre
    East, Philip
    Dirac-Svejstrup, A. Barbara
    Hartmann, Holger
    Heron, Mark
    Maslen, Sarah
    Chariot, Alain
    Soeding, Johannes
    Skehel, Mark
    Svejstrup, Jesper Q.
    NATURE, 2012, 484 (7394) : 386 - 389
  • [42] Analysis of RNA polymerase II elongation in vitro
    Adamson, TE
    Shore, SM
    Price, DH
    RNA POLYMERASES AND ASSOCIATED FACTORS, PT D, 2003, 371 : 264 - 275
  • [43] The RNA polymerase II general elongation complex
    Shilatifard, A
    BIOLOGICAL CHEMISTRY, 1998, 379 (01) : 27 - 31
  • [44] Complexity of RNA polymerase II elongation dynamics
    Palangat, Murali
    Larson, Daniel R.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (07): : 667 - 672
  • [45] THE RNA-POLYMERASE-II ELONGATION COMPLEX
    ASO, T
    CONAWAY, JW
    CONAWAY, RC
    FASEB JOURNAL, 1995, 9 (14): : 1419 - 1428
  • [46] RNA Polymerase II Transcription Elongation Control
    Guo, Jiannan
    Price, David H.
    CHEMICAL REVIEWS, 2013, 113 (11) : 8583 - 8603
  • [47] Analysis of RNA Polymerase II Elongation Introduction
    Price, David H.
    METHODS, 2009, 48 (04) : 321 - 322
  • [48] The RNA polymerase II general elongation factors
    Reines, D
    Conaway, JW
    Conaway, RC
    TRENDS IN BIOCHEMICAL SCIENCES, 1996, 21 (09) : 351 - 355
  • [49] Elongation by RNA polymerase II: the short and long of it
    Sim, RJ
    Belotserkovskaya, R
    Reinberg, D
    GENES & DEVELOPMENT, 2004, 18 (20) : 2437 - 2468
  • [50] The actin regulator WASp associates with chromatin and regulates RNA polymerase II transcription.
    D'Aulerio, Roberta
    He, Minghui
    Mohammad, Eusra
    Record, Julien
    Gautier, Jean
    Westerberg, Lisa S.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2024, 54 : 639 - 639