Direct Fabrication of 3D Electrodes Based on Graphene and Conducting Polymers for Supercapacitor Applications

被引:7
|
作者
Jimoh, Musibau Francis [1 ]
Carson, Gray Scott [2 ]
Anderson, Mackenzie Babetta [2 ]
El-Kady, Maher F. [2 ]
Kaner, Richard B. [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles UCLA, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles UCLA, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles UCLA, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
关键词
Graphene; one-step; PEDOT nanofibers; supercapacitor; vapor phase polymerization; AREAL CAPACITANCE; PERFORMANCE; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); OXIDE; POLYMERIZATION; STABILITY;
D O I
10.1002/adfm.202405569
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of commercially viable composite conducting polymer electrodes for energy storage is limited by the requirement of multiple and complex fabrication steps, low energy density, and poor cycling stability. In this work, a straightforward, economical, single-step method is developed for creating densely packed nanostructured PEDOT/graphene composite material demonstrating its application as an electrode for supercapacitors. The electrode achieved the highest mass loading reported so far in the literature for composite vapor phase polymerized PEDOT/rGO using aqueous FeCl3 (25.2 mg cm(-2)), and displayed an ultrahigh areal capacitance of 4628.3 mF cm(-2) at 0.5 mA cm(-2). The symmetric two-electrode setup displayed an energy density of 169.3 mu Wh cm(-2) and a 70% capacitance retention after 70 000 cycles, showcasing its exceptional performance and durability.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Reference electrodes based on conducting polymers
    Mangold, KM
    Schäfer, S
    Jüttner, K
    FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 2000, 367 (04): : 340 - 342
  • [42] 3D Scaffolds Based on Conductive Polymers for Biomedical Applications
    Alegret, Nuria
    Dominguez-Alfaro, Antonio
    Mecerreyes, David
    BIOMACROMOLECULES, 2019, 20 (01) : 73 - 89
  • [43] Fabrication of pectin biopolymer-based biocompatible freestanding electrodes for supercapacitor applications
    Harikumar, M. E.
    Batabyal, Sudip K.
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2023, 34 (09) : 2890 - 2902
  • [44] Direct 3D printing of polymers onto textiles: experimental studies and applications
    Pei, Eujin
    Shen, Jinsong
    Watling, Jennifer
    RAPID PROTOTYPING JOURNAL, 2015, 21 (05) : 556 - 571
  • [45] Fabrication of functionalized nitrogen-doped graphene for supercapacitor electrodes
    Chen, Chunnian
    Fan, Wei
    Ma, Ting
    Fu, Xuwang
    IONICS, 2014, 20 (10) : 1489 - 1494
  • [46] Fabrication of functionalized nitrogen-doped graphene for supercapacitor electrodes
    Chunnian Chen
    Wei Fan
    Ting Ma
    Xuwang Fu
    Ionics, 2014, 20 : 1489 - 1494
  • [47] Fabrication of 3D structures from graphene-based biocomposites
    Sayyar, Sepidar
    Officer, David L.
    Wallace, Gordon G.
    JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (19) : 3462 - 3482
  • [48] 3D printed interdigitated supercapacitor using reduced graphene oxide-MnOx/Mn3O4 based electrodes
    Mokhtarnejad, Mahshid
    Ribeiro, Erick L.
    Mukherjee, Dibyendu
    Khomami, Bamin
    RSC ADVANCES, 2022, 12 (27) : 17321 - 17329
  • [49] PAN-based nanofiber reduced graphene oxide electrodes for supercapacitor applications
    Osman Eksik
    Melih Besir Arvas
    Reha Yavuz
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [50] Microwave synthesis of simonkolleite nanoplatelets on 3D nickel foam-graphene for supercapacitor applications
    Khamlich, S.
    Mokrani, T.
    Dhlamini, M. S.
    Mothudi, B. M.
    Maaza, M.
    CUE 2015 - APPLIED ENERGY SYMPOSIUM AND SUMMIT 2015: LOW CARBON CITIES AND URBAN ENERGY SYSTEMS, 2016, 88 : 614 - 618