Unknown-Aware Domain Adversarial Learning for Open-Set Domain Adaptation

被引:0
|
作者
Jang, JoonHo [1 ]
Na, Byeonghu [1 ]
Shin, DongHyeok [1 ]
Ji, Mingi [1 ,4 ]
Song, Kyungwoo [2 ]
Moon, Il-Chul [3 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon, South Korea
[2] Univ Seoul, Seoul, South Korea
[3] Korea Adv Inst Sci & Technol, Summary AI, Daejeon, South Korea
[4] Google, Mountain View, CA 94043 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Open-Set Domain Adaptation (OSDA) assumes that a target domain contains unknown classes, which are not discovered in a source domain. Existing domain adversarial learning methods are not suitable for OSDA because distribution matching with unknown classes leads to negative transfer. Previous OSDA methods have focused on matching the source and the target distribution by only utilizing known classes. However, this known-only matching may fail to learn the target-unknown feature space. Therefore, we propose Unknown-Aware Domain Adversarial Learning (UADAL), which aligns the source and the target-known distribution while simultaneously segregating the target-unknown distribution in the feature alignment procedure. We provide theoretical analyses on the optimized state of the proposed unknown-aware feature alignment, so we can guarantee both alignment and segregation theoretically. Empirically, we evaluate UADAL on the benchmark datasets, which shows that UADAL outperforms other methods with better feature alignments by reporting state-of-the-art performancesy(dagger).
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [21] Source-Free Progressive Graph Learning for Open-Set Domain Adaptation
    Luo, Yadan
    Wang, Zijian
    Chen, Zhuoxiao
    Huang, Zi
    Baktashmotlagh, Mahsa
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 11240 - 11255
  • [22] Weakly Supervised Open-set Domain Adaptation by Dual-domain Collaboration
    Tan, Shuhan
    Jiao, Jiening
    Zheng, Wei-Shi
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5389 - 5398
  • [23] Multi-source Open-Set Image Classification Based on Deep Adversarial Domain Adaptation
    Zhang, Haitao
    Liu, Xinran
    Han, Qilong
    Lu, Dan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT V, 2023, 14258 : 143 - 156
  • [24] Extending Partial Domain Adaptation Algorithms to the Open-Set Setting
    Pikramenos, George
    Spyrou, Evaggelos
    Perantonis, Stavros J.
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [25] OPEN-SET DOMAIN GENERALIZATION VIA METRIC LEARNING
    Katsumata, Kai
    Kishida, Ikki
    Amma, Ayako
    Nakayama, Hideki
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 459 - 463
  • [26] GRAPH NEURAL NETWORK BASED OPEN-SET DOMAIN ADAPTATION
    Zhao, Shan
    Saha, Sudipan
    Zhu, Xiao Xiang
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 1407 - 1413
  • [27] Open Set Relation Extraction via Unknown-Aware Training
    Zhao, Jun
    Zhao, Xin
    Zhan, Wenyu
    Zhang, Qi
    Gui, Tao
    Wei, Zhongyu
    Chen, Yunwen
    Gao, Xiang
    Huang, Xuanjing
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 9453 - 9467
  • [28] Open-Set Domain Adaptation Under Few Source-Domain Labeled Samples
    Rakshit, Sayan
    Balasubramanian, S.
    Bandyopadhyay, Hmrishav
    Bharambe, Piyush
    Desetti, Sai Nandan
    Banerjee, Biplab
    Chaudhuri, Subhasis
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 4038 - 4047
  • [29] Towards Novel Target Discovery Through Open-Set Domain Adaptation
    Jing, Taotao
    Liu, Hongfu
    Ding, Zhengming
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9302 - 9311
  • [30] Learning to Generate the Unknowns as a Remedy to the Open-Set Domain Shift
    Baktashmotlagh, Mahsa
    Chen, Tianle
    Salzmann, Mathieu
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 3737 - 3746