Boundary parameter matching for isogeometric analysis using Schwarz-Christoffel mapping

被引:0
|
作者
Ji, Ye [1 ]
Moller, Matthias [1 ]
Yu, Yingying [2 ]
Zhu, Chungang [3 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, NL-2628 CD Delft, Netherlands
[2] Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China
[3] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Isogeometric analysis; Analysis-suitable parameterization; Schwarz-Christoffel mapping; Boundary correspondence; PLANAR DOMAIN PARAMETERIZATION; T-SPLINE CONSTRUCTION; COMPUTATIONAL DOMAIN; NUMERICAL COMPUTATION; CAD BOUNDARY; TRANSFORMATION; TOOLBOX; NURBS;
D O I
10.1007/s00366-024-02020-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Isogeometric analysis has brought a paradigm shift in integrating computational simulations with geometric designs across engineering disciplines. This technique necessitates analysis-suitable parameterization of physical domains to fully harness the synergy between Computer-Aided Design and Computer-Aided Engineering analyses. Existing methods often fix boundary parameters, leading to challenges in elongated geometries such as fluid channels and tubular reactors. This paper presents an innovative solution for the boundary parameter matching problem, specifically designed for analysis-suitable parameterizations. We employ a sophisticated Schwarz-Christoffel mapping technique, which is instrumental in computing boundary correspondences. A refined boundary curve reparameterization process complements this. Our dual-strategy approach maintains the geometric exactness and continuity of input physical domains, overcoming limitations often encountered with the existing reparameterization techniques. By employing our proposed boundary parameter matching method, we show that even a simple linear interpolation approach can effectively construct a satisfactory analysis-suitable parameterization. Our methodology offers significant improvements over traditional practices, enabling the generation of analysis-suitable and geometrically precise models, which is crucial for ensuring accurate simulation results. Numerical experiments show the capacity of the proposed method to enhance the quality and reliability of isogeometric analysis workflows.
引用
收藏
页码:3929 / 3947
页数:19
相关论文
共 50 条
  • [41] Calculating capacitance and analyzing nonlinearity of micro-accelerometers by Schwarz-Christoffel mapping
    He, Jiangbo
    Xie, Jin
    He, Xiaoping
    Du, Lianming
    Zhou, Wu
    Wang, Libin
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2014, 20 (06): : 1195 - 1203
  • [42] Conformal mapping: Schwarz-Christoffel method for flux-switching PM machines
    Esin Ilhan
    Emilia T Motoasca
    Johan JH Paulides
    Elena A Lomonova
    Mathematical Sciences, 2012, 6 (1)
  • [43] On the Parameter Problem of the Schwarz–Christoffel Mapping and Moduli of Quadrilaterals
    G. Giorgadze
    G. Kakulashvili
    Computational Methods and Function Theory, 2024, 24 : 27 - 51
  • [44] Seepage analysis under dams with vertical sheet pile using Schwarz-Christoffel transformation
    Abdulrahman, Abdulrahman
    Mardini, Jack
    INTERNATIONAL JOURNAL OF GEOTECHNICAL ENGINEERING, 2010, 4 (04) : 537 - 547
  • [45] Conformal mapping: Schwarz-Christoffel method for flux-switching PM machines
    Ilhan, Esin
    Motoasca, Emilia T.
    Paulides, Johan J. H.
    Lomonova, Elena A.
    MATHEMATICAL SCIENCES, 2012, 6 (01)
  • [46] TERRAIN CORRECTIONS FOR DC RESISTIVITY SURVEYS USING THE SCHWARZ-CHRISTOFFEL TRANSFORMATION
    PAPAZIAN, PB
    GEOPHYSICS, 1980, 45 (04) : 547 - 547
  • [47] Magnetic field of thin film heads using a Schwarz-Christoffel transformation
    Ribeiro, AL
    Machado, VM
    NONLINEAR ELECTROMAGNETIC SYSTEMS, 1996, 10 : 656 - 659
  • [48] SEISMIC HORIZON RECONSTRUCTION ON POLYGONAL DOMAINS USING THE SCHWARZ-CHRISTOFFEL TRANSFORMATION
    Doghraji, Salma
    Donias, Marc
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 4057 - 4061
  • [49] Calculation of Resistances for Multiply Connected Domains Using Schwarz-Christoffel Transformations
    DeLillo, Thomas K.
    Elcrat, Alan R.
    Kropf, Everett H.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2011, 11 (02) : 725 - 745
  • [50] ANALYSIS OF RECTANGULAR COAXIAL STRUCTURES BY NUMERICAL INVERSION OF THE SCHWARZ-CHRISTOFFEL TRANSFORMATION
    COSTAMAGNA, E
    FANNI, A
    IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (02) : 1454 - 1457