Metamagnetic anomalies in the kinetic Ashkin-Teller model

被引:0
|
作者
Santos, J. P. [1 ,2 ,3 ]
Nascimento, G. B. B. [1 ]
Vieira, V. T. P. [1 ]
Costa, M. M. G. [3 ]
机构
[1] Fed Univ Sao Joao Del Rei UFSJ, Dept Nat Sci, Sao Joao Del Rei, MG, Brazil
[2] Fed Univ Sao Joao Del Rei UFSJ, Dept Math, Sao Joao Del Rei, MG, Brazil
[3] Maynooth Univ, Dept Elect Engn, Maynooth, Ireland
关键词
Ashkin-Teller spin-1/2 model; Dynamic mean-field theory; Metamagnetic anomaly; Dynamic order parameters; Constant bias field; ISING-MODEL; RENORMALIZATION-GROUP; PHASE-TRANSITIONS; FIELD THEORY; MONTE-CARLO; STATISTICS; DIAGRAM;
D O I
10.1016/j.physa.2024.130017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study investigates the metamagnetic anomaly in the Ashkin-Teller spin-1/2 1/2 model in a ferromagnetic state, utilizing dynamic mean-field theory on a cubic lattice from a stochastic theory. We analyze instantaneous magnetizations over time, dynamic order parameters, and magnetic susceptibilities concerning the constant bias field, as well as examining dynamic phase diagrams. Our observations reveal that dynamic phase transitions occur at specific points of the constant bias field, where instantaneous magnetization transitions from oscillating between negative and positive states to a strictly positive state. We also observe a narrow region in the dynamic phase diagram between phase transitions of different order parameters of the model, for some conditions among the couplings of these order parameters. These results contribute to an understanding of the dynamic behavior of the spin-1/2 AT model under ferromagnetic conditions, providing interesting insights into phase transitions and the metamagnetic anomaly.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Critical interfaces and duality in the Ashkin-Teller model
    Picco, Marco
    Santachiara, Raoul
    PHYSICAL REVIEW E, 2011, 83 (06):
  • [32] Phase transitions in the anisotropic Ashkin-Teller model
    Bekhechi, S
    Benyoussef, A
    Elkenz, A
    Ettaki, B
    Loulidi, M
    PHYSICA A, 1999, 264 (3-4): : 503 - 514
  • [33] Phase Diagram for Ashkin-Teller Model on Bethe Lattice
    LE Jian-Xin
    YANG Zhan-Ru Department of Physics and Institute of Theorctical Physics
    CommunicationsinTheoreticalPhysics, 2005, 43 (05) : 841 - 846
  • [34] Random-cluster representation of the ashkin-teller model
    C. -E. Pfister
    Y. Velenik
    Journal of Statistical Physics, 1997, 88 : 1295 - 1331
  • [35] On the Ashkin-Teller model and Tutte-Whitney functions
    Farr, G. E.
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (02): : 251 - 260
  • [36] Critical interfaces of the Ashkin-Teller model at the parafermionic point
    Picco, M.
    Santachiara, R.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [37] PHASE-DIAGRAMS OF THE DILUTE ASHKIN-TELLER MODEL
    BENYOUSSEF, A
    LOULIDI, M
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1994, 182 (01): : 201 - 209
  • [38] THE ISING TRANSITION LINES OF THE SYMMETRIC ASHKIN-TELLER MODEL
    IGLOI, F
    ZITTARTZ, J
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1988, 73 (01): : 125 - 128
  • [39] The anisotropic Ashkin-Teller model:: a renormalization group study
    Bezerra, CG
    Mariz, AM
    de Araújo, JM
    da Costa, FA
    PHYSICA A, 2001, 292 (1-4): : 429 - 436
  • [40] The quantum Ashkin-Teller model with quantum group symmetry
    Chang, Z
    Guo, HY
    Wu, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (27): : L495 - L499