Population dynamics in a Leslie-Gower predator-prey model with predator harvesting at high densities

被引:0
|
作者
Garcia, Christian Cortes [1 ,2 ,3 ]
机构
[1] Grp Interdisciplinar Sistemas Complejos GISC, Madrid, Spain
[2] Univ Carlos III Madrid, Dept Matemat, Madrid, Spain
[3] Ctr Nacl Biotecnol, Dept Biol Sistemas, Madrid, Spain
关键词
bifurcation theory; critical threshold; crossing region; Filippov systems; sliding region; BIFURCATION-ANALYSIS;
D O I
10.1002/mma.10359
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a Leslie-Gower predator-prey model in which the predator can only be captured when its population size exceeds a critical value; the mean growth rate of the prey in the absence of the predator is subject to a semi-saturation rate that affects its birth curve, and the interaction between the two species is defined by a Holling II predation functional with alternative food for the predator. Since the proposed model is equivalent to a Filippov system, its mathematical analysis leads to a local study of the equilibria in each vector field corresponding to the proposed model, in addition to the study of the stability of its pseudo-equilibria located on the curve separating the two vector fields. In particular, the model could have between one and three pseudo-equilibria and at least one limit cycle surrounding one or two inner equilibria, locally unstable points.
引用
收藏
页码:804 / 838
页数:35
相关论文
共 50 条