Local existence for the non-resistive magnetohydrodynamic system with fractional dissipation in the Lp framework

被引:0
|
作者
Qiu, Hua [1 ]
Yao, Zheng-an [2 ]
机构
[1] South China Agr Univ, Dept Math, Guangzhou 510642, Peoples R China
[2] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Magnetohydrodynamic system; Weak solution; Uniqueness; Besov spaces; GLOBAL SMALL SOLUTIONS; MIXED PARTIAL DISSIPATION; 2D MHD EQUATIONS; WELL-POSEDNESS; WEAK SOLUTIONS; CLASSICAL-SOLUTIONS; REGULARITY; UNIQUENESS; CRITERION;
D O I
10.1007/s42985-022-00211-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem of the d-dimensional magnetohydrodynamic (MHD) system with the fractional dissipation (-Delta)(alpha)u and without the magnetic diffusion. We obtain the local existence and uniqueness of the solution to the non-resistive MHD system in the L-P framework under two cases: alpha >= 1 and alpha < 1. Our result improves considerably the recent results in Chemin et al. (Adv Math 286:1-31, 2016), Jiu et al. (Commun Math Sci 18:987-1022, 2020), Li et al. (Adv Math 317:786-798, 2017), and Wan (Nonlinear Anal Real World Appl 30:32-40, 2016), which can be regarded as a generalization of these works.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] UNIQUE WEAK SOLUTIONS OF THE NON-RESISTIVE MAGNETOHYDRODYNAMIC EQUATIONS WITH FRACTIONAL DISSIPATION
    Jiu, Quansen
    Suo, Xiaoxiao
    Wu, Jiahong
    Yu, Huan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (04) : 987 - 1022
  • [2] Energy conservation of the resistive and the non-resistive magnetohydrodynamic equations
    Chen, Qionglei
    Zhang, Qi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 1994 - 2005
  • [3] Local existence for the non-resistive MHD equations in Besov spaces
    Chemin, Jean-Yves
    McCormick, David S.
    Robinson, James C.
    Rodrigo, Jose L.
    ADVANCES IN MATHEMATICS, 2016, 286 : 1 - 31
  • [4] Local Existence for the Non-Resistive MHD Equations in Nearly Optimal Sobolev Spaces
    Charles L. Fefferman
    David S. McCormick
    James C. Robinson
    Jose L. Rodrigo
    Archive for Rational Mechanics and Analysis, 2017, 223 : 677 - 691
  • [5] Local Existence for the Non-Resistive MHD Equations in Nearly Optimal Sobolev Spaces
    Fefferman, Charles L.
    McCormick, David S.
    Robinson, James C.
    Rodrigo, Jose L.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (02) : 677 - 691
  • [6] On Magnetic Inhibition Theory in Non-resistive Magnetohydrodynamic Fluids
    Fei Jiang
    Song Jiang
    Archive for Rational Mechanics and Analysis, 2019, 233 : 749 - 798
  • [7] On Magnetic Inhibition Theory in Non-resistive Magnetohydrodynamic Fluids
    Jiang, Fei
    Jiang, Song
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 233 (02) : 749 - 798
  • [8] Local existence for the non-resistive magnetohydrodynamic system with fractional dissipation in the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} framework
    Hua Qiu
    Zheng-an Yao
    Partial Differential Equations and Applications, 2022, 3 (6):
  • [9] Local existence and uniqueness for the non-resistive MHD equations in homogeneous Besov spaces
    Li, Jinlu
    Tan, Wenke
    Yin, Zhaoyang
    ADVANCES IN MATHEMATICS, 2017, 317 : 786 - 798
  • [10] LOCAL-IN-TIME EXISTENCE FOR THE NON-RESISTIVE INCOMPRESSIBLE MAGNETO-MICROPOLAR FLUIDS
    Zhang, Peixin
    Zhu, Mingxuan
    APPLICATIONS OF MATHEMATICS, 2022, 67 (02) : 199 - 208