Equivalence and regularity of weak and viscosity solutions for the anisotropic p(<middle dot>)-Laplacian

被引:0
|
作者
Ochoa, Pablo [1 ]
Valverde, Federico Ramos [2 ]
机构
[1] Univ Nacl Cuyo, Univ JA Maza, CONICET, RA-5500 Mendoza, Argentina
[2] Univ Nacl San Juan, CONICET, Mitre 396 Este,J5402CWH, San Juan, Argentina
关键词
Nonlinear elliptic equations; P(x)-Laplacian; Viscosity solutions; Weak solutions; Comparison principle; EXPONENT SOBOLEV SPACES; VARIABLE EXPONENT; EQUATIONS; MULTIPLICITY;
D O I
10.1007/s00030-024-00981-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we state the equivalence between weak and viscosity solutions for non-homogeneous problems involving the anisotropic p(<middle dot>)-Laplacian. The proof that viscosity solutions are weak solutions is performed by the inf-convolution technique. However, due to the anisotropic nature of the p(<middle dot>)-Laplacian we adapt the definition of inf-convolution to the non-homogeneity of this operator. For the converse, we develop comparison principles for weak solutions. Since the locally Lipschitz assumption is crucial to get the viscosity-weak implication, we prove that a class of bounded viscosity solutions are indeed locally Lipschitz.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Regularity of solutions to degenerate p-Laplacian equations
    Cruz-Uribe, David
    Moen, Kabe
    Naibo, Virginia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 458 - 478
  • [22] Weak solutions for p-Laplacian equation
    Bhuvaneswari, Venkatasubramaniam
    Lingeshwaran, Shangerganesh
    Balachandran, Krishnan
    ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (04) : 319 - 334
  • [23] Equivalence of weak and viscosity solutions for the nonhomogeneous double phase equation
    Fang, Yuzhou
    Radulescu, Vicentiu D.
    Zhang, Chao
    MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2519 - 2559
  • [24] Equivalence of weak and viscosity solutions for the nonhomogeneous double phase equation
    Yuzhou Fang
    Vicenţiu D. Rădulescu
    Chao Zhang
    Mathematische Annalen, 2024, 388 : 2519 - 2559
  • [25] REGULARITY OF NONNEGATIVE SOLUTIONS OF THE P-LAPLACIAN PARABOLIC EQUATION
    ESTEBAN, JR
    VAZQUEZ, JL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (03): : 105 - 110
  • [26] Holder regularity for the gradients of solutions of the strong p(x)-Laplacian
    Zhang, Chao
    Zhou, Shulin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 1066 - 1077
  • [27] Multiple solutions for a class of anisotropic p?-Laplacian problems
    Bonanno, G.
    D'Agui, G.
    Sciammetta, A.
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [28] Multiple solutions for a class of anisotropic p⃗-Laplacian problems
    G. Bonanno
    G. D’Aguì
    A. Sciammetta
    Boundary Value Problems, 2023
  • [29] On weak solutions for p-Laplacian equations with weights
    Pucci, Patrizia
    Servadei, Raffaella
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2007, 18 (03): : 257 - 267
  • [30] On weak solutions for p-Laplacian equations with weights
    Pucci, Patrizia
    Servadei, Raffaella
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2007, 18 (03) : 257 - 267