Bifurcation theory of limit cycles by higher order Melnikov functions and applications

被引:4
|
作者
Liu, Shanshan [1 ]
Han, Maoan [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
国家重点研发计划;
关键词
Higher order Melnikov function; Hopf bifurcation; Homoclinic bifurcation; Limit cycle; HAMILTONIAN-SYSTEMS; PERIODIC-SOLUTIONS; NUMBER; ORBITS; HOPF;
D O I
10.1016/j.jde.2024.04.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Poincar & eacute;, Hopf and homoclinic bifurcations of limit cycles for planar nearHamiltonian systems. Our main results establish Hopf and homoclinic bifurcation theories by higher order Melnikov functions, obtaining conditions on upper bounds and lower bounds of the maximum number of limit cycles. As an application, we concern a cubic near -Hamiltonian system, and study Hopf and homoclinic bifurcations in detail, finding more limit cycles than [26]. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:29 / 66
页数:38
相关论文
共 50 条
  • [31] Higher order stroboscopic averaged functions: a general relationship with Melnikov functions (oct, 77, 2021)
    Novaes, Douglas D.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (64)
  • [32] A note on a generalization of Franqoise's algorithm for calculating higher order Melnikov functions
    Jebrane, A
    Mardesic, P
    Pelletier, M
    BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (09): : 749 - 760
  • [33] Bifurcation of limit cycles at the equator
    Qi Zhang
    Zhao Zhengquan
    Gui Weihua
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (02) : 422 - 426
  • [34] Simulated bifurcation for higher-order cost functions
    Kanao, Taro
    Goto, Hayato
    APPLIED PHYSICS EXPRESS, 2023, 16 (01)
  • [35] BIFURCATION OF LIMIT-CYCLES
    PERKO, LM
    LECTURE NOTES IN MATHEMATICS, 1990, 1455 : 315 - 333
  • [36] HIGHER-ORDER MELNIKOV METHOD
    郭友中
    刘曾荣
    江霞妹
    韩志斌
    AppliedMathematicsandMechanics(EnglishEdition), 1991, (01) : 21 - 32
  • [37] Melnikov function and limit cycle bifurcation from a nilpotent center
    Jiang, Jiao
    Han, Maoan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (03): : 182 - 193
  • [38] Melnikov functions of arbitrary order for piecewise smooth differential systems in Rn and applications
    Chen, Xingwu
    Li, Tao
    Llibre, Jaume
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 314 : 340 - 369
  • [39] SECOND-ORDER BIFURCATION OF LIMIT CYCLES FROM A QUADRATIC REVERSIBLE CENTER
    Peng, Linping
    Huang, Bo
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [40] Bifurcation of limit cycles in a fourth-order near-Hamiltonian system
    Han, Maoan
    Shang, Desheng
    Zheng, Wang
    Yu, Pei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (11): : 4117 - 4144