EEGGAN-Net: enhancing EEG signal classification through data augmentation

被引:3
|
作者
Song, Jiuxiang [1 ]
Zhai, Qiang [1 ,2 ]
Wang, Chuang [3 ]
Liu, Jizhong [1 ]
机构
[1] Nanchang Univ, Sch Adv Mfg, Nanchang, Jiangxi, Peoples R China
[2] Wuhan Univ Technol, Shaoxing Inst Adv Res, Shaoxing, Zhejiang, Peoples R China
[3] Xiangyang Auto Vocat Tech Coll, Intelligent Mfg Coll, Xiangyang, Hubei, Peoples R China
来源
FRONTIERS IN HUMAN NEUROSCIENCE | 2024年 / 18卷
关键词
brain-computer interface; electroencephalography; Conditional Generative Adversarial Network; cropped training; Squeeze-and-Excitation attention; BRAIN-COMPUTER-INTERFACE; RECOVERY; STROKE;
D O I
10.3389/fnhum.2024.1430086
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background Emerging brain-computer interface (BCI) technology holds promising potential to enhance the quality of life for individuals with disabilities. Nevertheless, the constrained accuracy of electroencephalography (EEG) signal classification poses numerous hurdles in real-world applications.Methods In response to this predicament, we introduce a novel EEG signal classification model termed EEGGAN-Net, leveraging a data augmentation framework. By incorporating Conditional Generative Adversarial Network (CGAN) data augmentation, a cropped training strategy and a Squeeze-and-Excitation (SE) attention mechanism, EEGGAN-Net adeptly assimilates crucial features from the data, consequently enhancing classification efficacy across diverse BCI tasks.Results The EEGGAN-Net model exhibits notable performance metrics on the BCI Competition IV-2a and IV-2b datasets. Specifically, it achieves a classification accuracy of 81.3% with a kappa value of 0.751 on the IV-2a dataset, and a classification accuracy of 90.3% with a kappa value of 0.79 on the IV-2b dataset. Remarkably, these results surpass those of four other CNN-based decoding models.Conclusions In conclusion, the amalgamation of data augmentation and attention mechanisms proves instrumental in acquiring generalized features from EEG signals, ultimately elevating the overall proficiency of EEG signal classification.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Enhancing link prediction in graph data augmentation through graphon mixup
    Tangina Sultana
    Md. Delowar Hossain
    Md. Golam Morshed
    Young-Koo Lee
    Neural Computing and Applications, 2025, 37 (8) : 6267 - 6282
  • [32] Enhancing Text Classification Models with Generative AI-aided Data Augmentation
    Zhao, Huanhuan
    Chen, Haihua
    Yoon, Hong-Jun
    2023 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE TESTING, AITEST, 2023, : 138 - 145
  • [33] Reduction of irrelevant and redundant data from TFRs for EEG signal classification
    Avendano-Valencia, L. D.
    Martinez-Vargas, J. D.
    Giraldo, E.
    Castellanos-Dominguez, G.
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 4010 - 4013
  • [34] ENHANCING THE INTERPRETABILITY OF TERAHERTZ DATA THROUGH UNSUPERVISED CLASSIFICATION
    Stephani, Henrike
    Herrmann, Michael
    Wiesauer, Karin
    Katletz, Stefan
    Heise, Bettina
    XIX IMEKO WORLD CONGRESS: FUNDAMENTAL AND APPLIED METROLOGY, PROCEEDINGS, 2009, : 2329 - 2334
  • [35] Synthetic Biological Signals Machine-Generated by GPT-2 Improve the Classification of EEG and EMG Through Data Augmentation
    Bird, Jordan J.
    Pritchard, Michael
    Fratini, Antonio
    Ekart, Aniko
    Faria, Diego R.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 3498 - 3504
  • [36] Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
    Xie, Yu
    Oniga, Stefan
    SENSORS, 2023, 23 (04)
  • [37] Deep Learning based CP-OFDM Signal Classification with Data Augmentation
    Combo, Jorge
    Tato, Anxo
    Escudero-Garzas, J. Joaquin
    Perez Roca, Luis P.
    Gonzalez, Pablo
    2022 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING (BLACKSEACOM), 2022, : 352 - 357
  • [38] Few-shot electromagnetic signal classification:A data union augmentation method
    Huaji ZHOU
    Jing BAI
    Yiran WANG
    Licheng JIAO
    Shilian ZHENG
    Weiguo SHEN
    Jie XU
    Xiaoniu YANG
    Chinese Journal of Aeronautics, 2022, 35 (09) : 49 - 57
  • [39] Few-shot electromagnetic signal classification: A data union augmentation method
    Zhou, Huaji
    Bai, Jing
    Wang, Yiran
    Jiao, Licheng
    Zheng, Shilian
    Shen, Weiguo
    Xu, Jie
    Yang, Xiaoniu
    CHINESE JOURNAL OF AERONAUTICS, 2022, 35 (09) : 49 - 57
  • [40] Few-shot electromagnetic signal classification:A data union augmentation method
    Huaji ZHOU
    Jing BAI
    Yiran WANG
    Licheng JIAO
    Shilian ZHENG
    Weiguo SHEN
    Jie XU
    Xiaoniu YANG
    Chinese Journal of Aeronautics, 2022, (09) : 49 - 57