Modelling soil-water retention curves subject to multiple wetting-drying cycles: An approach for expansive soils

被引:1
|
作者
Yu, Miao [1 ,2 ]
Gui, Yilin [1 ,2 ,3 ]
Li, Bonan [1 ,2 ]
机构
[1] Queensland Univ Technol QUT Gardens Point, Sch Civil & Environm Engn, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol, Ctr Mat Sci, Gardens Point, Qld 4000, Australia
[3] Queensland Univ Technol, Fac Engn, Grp Sustainable Engn Construct Mat, Gardens Point, Brisbane, Qld 4000, Australia
关键词
Wetting-drying cycles; Soil-water retention curve (SWRC); Expansive soil; Suction; Degree of saturation; SHEAR-STRENGTH; HYSTERESIS; BEHAVIOR; SUCTION; PREDICTION; DENSITY; STRESS; SWCC;
D O I
10.1016/j.compgeo.2024.106335
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study proposes an innovative and simple method to quantify the effect of wetting-drying history on soil-water retention curve (SWRC) of expansive soils. This method is based on the increment relationship between degree of saturation and initial void ratio corresponding to irreversible swelling or shrinkage after each wetting-drying cycle, following the double-structure scheme for three-phase reactive porous media. The approach satisfies the intrinsic constraints for partially saturated porous media, and the incremental relationship can be applied in any existing SWRC equations for future water retention capacity prediction. In this respect, only one new rate function is proposed, which could be easily calibrated by relevant experimental data. The prediction of the model is verified through the comparison with relevant experimental data of two expansive clayey soils. To evaluate the general applicability of the proposed method, two typical SWRC equations proposed in literature were used. The results showed a very good agreement with experimental data subject to multiple wetting-drying cycles, indicating its potential as an effective tool for estimating preliminary SWRCs of expansive soils.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [31] Slope Crack Propagation Law and Numerical Simulation of Expansive Soil under Wetting-Drying Cycles
    Chen, Xuanyi
    Jing, Xiaofei
    Li, Xiaoshuang
    Chen, Junji
    Ma, Qiang
    Liu, Xiaohua
    SUSTAINABILITY, 2023, 15 (07)
  • [32] Stability of Expansive Soil Slopes under Wetting-Drying Cycles Based on the Discrete Element Method
    Wang, Hao
    Wang, Yejiao
    Jin, Fujie
    WATER, 2024, 16 (06)
  • [33] Experimental study on crack evolution and strength attenuation of expansive soil under wetting-drying cycles
    Wang S.
    Yang Z.
    Li X.
    Luo Z.
    Xu C.
    Li D.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (05): : 113 - 122
  • [34] An Approach to Estimate Wetting Path of Soil-Water Retention Curve from Drying Path
    Johari, A.
    Nejad, A. Hooshmand
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2018, 42 (01) : 85 - 89
  • [35] Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups
    Li G.-W.
    Wang J.-Y.
    Chen W.
    Wu J.-T.
    Cao X.-S.
    Wu S.-F.
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2022, 44 (04): : 643 - 651
  • [36] Hysteresis Cycles Prediction and Their Behavior on Expansive Soil-Water Retention Curve
    Galaviz-Gonzalez, Jose Roberto
    Horta-Rangel, Jaime
    Avalos-Cueva, David
    Limon-Covarrubias, Pedro
    Robles-Sotelo, Jaime
    GEOTECHNICAL ENGINEERING IN THE XXI CENTURY: LESSONS LEARNED AND FUTURE CHALLENGES, 2019, : 716 - 723
  • [37] Experimental investigations of the soil water retention curve under multiple drying–wetting cycles
    Tiande Wen
    Longtan Shao
    Xiaoxia Guo
    Yanru Zhao
    Acta Geotechnica, 2020, 15 : 3321 - 3326
  • [38] Predicting soil-water characteristic curves of expansive soils relying on correlations
    Al-Mahbashi, Ahmed M.
    Dafalla, Muawia
    Al-Shamrani, Mosleh
    GEOMECHANICS AND ENGINEERING, 2023, 33 (06) : 625 - 633
  • [39] Effects of Drying-Wetting Cycles on Soil-Water Characteristic Curve
    Sayem, Hossain Md
    Kong, Ling-wei
    2016 INTERNATIONAL CONFERENCE ON POWER ENGINEERING & ENERGY, ENVIRONMENT (PEEE 2016), 2016, : 607 - 614
  • [40] A water retention model accounting for the hysteresis induced by hydraulic and mechanical wetting-drying cycles
    Azizi, Arash
    Jommi, Cristina
    Musso, Guido
    COMPUTERS AND GEOTECHNICS, 2017, 87 : 86 - 98