Orthogonal Non-negative Tensor Factorization based Multi-view Clustering

被引:0
|
作者
Li, Jing [1 ]
Gao, Quanxue [1 ]
Wang, Qianqian [1 ]
Yang, Ming [2 ]
Xia, Wei [1 ]
机构
[1] Xidian Univ, Xian, Shaanxi, Peoples R China
[2] Harbin Engn Univ, Harbin, Heilongjiang, Peoples R China
关键词
MATRIX FACTORIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering (MVC) based on non-negative matrix factorization (NMF) and its variants have attracted much attention due to their advantages in clustering interpretability. However, existing NMF-based multi-view clustering methods perform NMF on each view respectively and ignore the impact of between-view. Thus, they can't well exploit the within-view spatial structure and between-view complementary information. To resolve this issue, we present orthogonal non-negative tensor factorization (Orth-NTF) and develop a novel multi-view clustering based on Orth-NTF with one-side orthogonal constraint. Our model directly performs Orth-NTF on the 3rd-order tensor which is composed of anchor graphs of views. Thus, our model directly considers the between-view relationship. Moreover, we use the tensor Schatten p-norm regularization as a rank approximation of the 3rd-order tensor which characterizes the cluster structure of multi-view data and exploits the between-view complementary information. In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point. Extensive experiments on various benchmark datasets indicate that our proposed method is able to achieve satisfactory clustering performance.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Robust Hypergraph Regularized Deep Non-Negative Matrix Factorization for Multi-View Clustering
    Che, Hangjun
    Li, Chenglu
    Leung, Man-Fai
    Ouyang, Deqiang
    Dai, Xiangguang
    Wen, Shiping
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [22] Consensus and complementary regularized non-negative matrix factorization for multi-view image clustering
    Li, Guopeng
    Song, Dan
    Bai, Wei
    Han, Kun
    Tharmarasa, Ratnasingham
    [J]. INFORMATION SCIENCES, 2023, 623 : 524 - 538
  • [23] Multi-view data clustering via non-negative matrix factorization with manifold regularization
    Ghufran Ahmad Khan
    Jie Hu
    Tianrui Li
    Bassoma Diallo
    Hongjun Wang
    [J]. International Journal of Machine Learning and Cybernetics, 2022, 13 : 677 - 689
  • [24] Multi-view clustering on unmapped data via constrained non-negative matrix factorization
    Zong, Linlin
    Zhang, Xianchao
    Liu, Xinyue
    [J]. NEURAL NETWORKS, 2018, 108 : 155 - 171
  • [25] Semi-supervised multi-view clustering by label relaxation based non-negative matrix factorization
    Yang, Zuyuan
    Zhang, Huimin
    Liang, Naiyao
    Li, Zhenni
    Sun, Weijun
    [J]. VISUAL COMPUTER, 2023, 39 (04): : 1409 - 1422
  • [26] Semi-supervised multi-view clustering by label relaxation based non-negative matrix factorization
    Zuyuan Yang
    Huimin Zhang
    Naiyao Liang
    Zhenni Li
    Weijun Sun
    [J]. The Visual Computer, 2023, 39 : 1409 - 1422
  • [27] Multi-view non-negative matrix factorization for scene recognition
    Tang, Jinjiang
    Qian, Weijie
    Zhao, Zhijun
    Liu, Weiliang
    He, Ping
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 59 : 9 - 13
  • [28] Multi-layer manifold learning for deep non-negative matrix factorization-based multi-view clustering
    Luong, Khanh
    Nayak, Richi
    Balasubramaniam, Thirunavukarasu
    Bashar, Md Abul
    [J]. PATTERN RECOGNITION, 2022, 131
  • [29] Orthogonal multi-view tensor-based learning for clustering
    Ma, Shuangxun
    Liu, Yuehu
    Liu, Guangcan
    Zheng, Qinghai
    Zhang, Chi
    [J]. NEUROCOMPUTING, 2022, 500 : 592 - 603
  • [30] Multi-Task Multi-View Clustering for Non-Negative Data
    Zhang, Xianchao
    Zhang, Xiaotong
    Liu, Han
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 4055 - 4061