Face Recognition Smart Attendance System using Convolutional Neural Networks

被引:0
|
作者
Manimekalai, M. A. P. [1 ]
Daniel, Esther [1 ]
Neebha, T. Mary [1 ]
Muthulakshmi, K. [2 ]
Jess, C. Ryan Paul [1 ]
Raguram, S. [1 ]
机构
[1] Karunya Inst Technol & Sci, Coimbatore, India
[2] Sri Krishna Coll Engn & Technol, Coimbatore, India
来源
PRZEGLAD ELEKTROTECHNICZNY | 2024年 / 100卷 / 05期
关键词
Attendance; CNN (Convolutional Neural Networks); face images; extraction; IoT (Internet of Things);
D O I
10.15199/48.2024.05.46
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
. An automated face attendance system using Convolutional Neural Networks (CNN) is a promising technology for improving attendance management in educational institutions, workplaces, and other organizations. This system uses a deep learning model based on CNN to detect and recognize faces from images captured by a camera. The captured image is pre-processed by applying various techniques such as face detection, extraction, and normalization to extract facial features. The extracted features are then stored in a real-time database and used to train the CNN model to recognize the faces of individuals accurately. The system can efficiently handle various lighting conditions and pose variations to recognize individuals. The proposed method provides a fast and accurate approach to attendance management that can significantly reduce manual efforts and errors.
引用
收藏
页码:244 / 247
页数:4
相关论文
共 50 条
  • [41] The Effects of Augmented Training Dataset on Performance of Convolutional Neural Networks in Face Recognition System
    Kutlugun, Mehmet Ali
    Sirin, Yahya
    Karakaya, Mehmet Ali
    PROCEEDINGS OF THE 2019 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2019, : 929 - 932
  • [42] Innovative Integration of Convolutional Neural Networks for Enhanced Face Recognition
    Kavita
    Chhillar, Rajender Singh
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 1941 - 1950
  • [43] Convolutional Neural Networks with Fused Layers Applied to Face Recognition
    Syafeeza, A. R.
    Khalil-Hani, M.
    Liew, S. S.
    Bakhteri, R.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2015, 14 (03)
  • [44] Modeling Biological Face Recognition with Deep Convolutional Neural Networks
    van Dyck L.E.
    Gruber W.R.
    Journal of Cognitive Neuroscience, 2023, 35 (10) : 1521 - 1537
  • [45] Face Recognition Model Design Based on Convolutional Neural Networks
    Zhang, Shangtao
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [46] An Efficient Approach to Face Emotion Recognition with Convolutional Neural Networks
    Bialek, Christian
    Matiolanski, Andrzej
    Grega, Michal
    ELECTRONICS, 2023, 12 (12)
  • [47] Mutual Component Convolutional Neural Networks for Heterogeneous Face Recognition
    Deng, Zhongying
    Peng, Xiaojiang
    Li, Zhifeng
    Qiao, Yu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) : 3102 - 3114
  • [48] Ensemble of Deep Convolutional Neural Networks With Gabor Face Representations for Face Recognition
    Choi, Jae Young
    Lee, Bumshik
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 3270 - 3281
  • [49] Class Attendance Management System Using Face Recognition
    Salim, Omar Abdul Rhman
    Olanrewaju, Rashidah Funke
    Balogun, Wasiu Adebayo
    PROCEEDINGS OF THE 2018 7TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING (ICCCE), 2018, : 93 - 98
  • [50] When Face Recognition Meets with Deep Learning: an Evaluation of Convolutional Neural Networks for Face Recognition
    Hu, Guosheng
    Yang, Yongxin
    Yi, Dong
    Kittler, Josef
    Christmas, William
    Li, Stan Z.
    Hospedales, Timothy
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 384 - 392