Breathers, rogue waves, and interaction solutions for the variable coefficient Kundu-nonlinear Schrödinger equation

被引:4
|
作者
Zhang, Xi [1 ]
Wang, Yu-Feng [1 ]
Yang, Sheng-Xiong [1 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
PLANE-WAVE; SOLITONS;
D O I
10.1063/5.0213411
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
With the inhomogeneity of optical fiber media taken into account, under investigation in this paper is the variable coefficient Kundu-nonlinear Schr & ouml;dinger equation, which describes the pulses propagation in optical fibers. Based on Lax pair, the Nth-order Darboux transformation is constructed. Depending on plane wave solution, the first- and second-order breather solutions are derived and the interactions between breathers are graphically analyzed. The Kuznetsov-Ma breather, Akhmediev breather, and spatial-temporal breather have been obtained. Moreover, the first-, second-, and third-order rogue wave solutions have been constructed. The usual rogue waves and first- and second-order line rogue waves are observed. The weak and strong interactions between the first-, second-order rogue waves, and spatial-temporal period breather are studied. Furthermore, variable coefficient delta ( t ) causes rogue waves to produce some interesting evolutionary phenomena, which have been systematically analyzed. In addition, the influences of parameters for the properties of solutions are discussed.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Rogue wave solutions of the nonlinear Schrödinger equation with variable coefficients
    CHANGFU LIU
    YAN YAN LI
    MEIPING GAO
    ZEPING WANG
    ZHENGDE DAI
    CHUANJIAN WANG
    Pramana, 2015, 85 : 1063 - 1072
  • [12] A partial derivative<overline>-Dressing Method for the Kundu-Nonlinear Schrödinger Equation
    Hu, Jiawei
    Zhang, Ning
    MATHEMATICS, 2024, 12 (02)
  • [13] N-soliton solutions for the novel Kundu-nonlinear Schrödinger equation and Riemann-Hilbert approach
    Chen, Yipu
    Li, Biao
    WAVE MOTION, 2024, 127
  • [14] Spatiotemporal Rogue Waves for the Variable-Coefficient (3+1)-Dimensional Nonlinear Schrdinger Equation
    王悦悦
    戴朝卿
    CommunicationsinTheoreticalPhysics, 2012, 58 (08) : 255 - 260
  • [15] Breathers and rogue waves: Demonstration with coupled nonlinear Schrödinger family of equations
    N VISHNU PRIYA
    M SENTHILVELAN
    M LAKSHMANAN
    Pramana, 2015, 84 : 339 - 352
  • [16] Nonautonomous solitons and breathers for the coupled variable-coefficient derivative nonlinear Schrödinger equation
    Wu, Sen
    Ding, Cui Cui
    Li, Xian
    NONLINEAR DYNAMICS, 2024, : 10277 - 10290
  • [17] Rogue Waves and Their Patterns in the Vector Nonlinear Schrödinger Equation
    Guangxiong Zhang
    Peng Huang
    Bao-Feng Feng
    Chengfa Wu
    Journal of Nonlinear Science, 2023, 33
  • [18] Rogue Wave Solutions for Nonlinear Schrdinger Equation with Variable Coefficients in Nonlinear Optical Systems
    陈琪
    张卫国
    张海强
    杨波
    Communications in Theoretical Physics, 2014, 62 (09) : 373 - 382
  • [19] Multi-Soliton Solutions for the Nonlocal Kundu-Nonlinear Schrödinger Equation with Step-Like Initial Data
    Ling Lei
    Shou-Fu Tian
    Yan-Qiang Wu
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 1661 - 1679
  • [20] Breather and rogue wave solutions for the variable coefficient nonlinear Schrödinger equation on Jacobian elliptic function periodic backgrounds
    Wei, Meng-Chu
    Wen, Xiao-Yong
    APPLIED MATHEMATICS LETTERS, 2025, 166