On the complexity of a quadratic regularization algorithm for minimizing nonsmooth and nonconvex functions

被引:0
|
作者
Amaral, V. S. [1 ]
Lopes, J. O. [1 ]
Santos, P. S. M. [2 ]
Silva, G. N. [1 ]
机构
[1] Univ Fed Piaui, Dept Math, Teresina, Brazil
[2] Fed Univ Delta Parnaiba, Parnaiba, Brazil
关键词
Nonconvex optimization; nonsmooth optimization; quadratic regularization; worst-case evaluation complexity; PROXIMAL POINT ALGORITHM; WORST-CASE COMPLEXITY; MINIMIZATION; ORDER;
D O I
10.1080/10556788.2024.2368578
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we consider the problem of minimizing the function $ f(x)=g_1(x)+g_2(x)-h(x) $ f(x)=g1(x)+g2(x)-h(x) over $ \mathbb {R}<^>n $ Rn, where $ g_1 $ g1 is a proper and lower semicontinuous function, $ g_2 $ g2 is continuously differentiable with a H & ouml;lder continuous gradient and h is a convex function that may be nondifferentiable. This problem has important practical applications but is challenging to solve due to the presence of nonconvexities and nonsmoothness. To address this issue, we propose an algorithm based on a proximal gradient method that uses a quadratic approximation of the function $ g_2 $ g2 and a nonconvex regularization term. We show that the number of iterations required to reach our stopping criterion is $ \mathcal {O}(\max \{\epsilon <^>{-\frac {\beta +1}{\beta }},\eta <^>\frac {2}{\beta } \epsilon <^>{-\frac {2(\beta +1)}{\beta }}\}) $ O(max{& varepsilon;-beta+1 beta,eta 2 beta & varepsilon;-2(beta+1)beta}). Our approach offers a promising strategy for solving this challenging optimization problem and has potential applications in various fields. Numerical examples are provided to illustrate the theoretical results.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Minimizing Nonconvex Non-Separable Functions
    Yu, Yaoliang
    Zheng, Xun
    Marchetti-Bowick, Micol
    Xing, Eric P.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 1107 - 1115
  • [42] Minimizing Nonconvex Functions for Sparse Vector Reconstruction
    Mourad, Nasser
    Reilly, James P.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (07) : 3485 - 3496
  • [43] Codifferential method for minimizing nonsmooth DC functions
    A. M. Bagirov
    J. Ugon
    Journal of Global Optimization, 2011, 50 : 3 - 22
  • [44] A PROXIMAL MINIMIZATION ALGORITHM FOR STRUCTURED NONCONVEX AND NONSMOOTH PROBLEMS
    Bot, Radu Ioan
    Csetnek, Erno Robert
    Dang-Khoa Nguyen
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (02) : 1300 - 1328
  • [45] An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization
    Adil Bagirov
    Asef Nazari Ganjehlou
    Mathematical Methods of Operations Research, 2008, 67 : 187 - 206
  • [46] An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization
    Bagirov, Adil
    Ganjehlou, Asef Nazari
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2008, 67 (02) : 187 - 206
  • [47] Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization
    Kiwiel, Krzysztof C.
    SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) : 379 - 388
  • [48] Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
    Chen, Yunmei
    Liu, Hongcheng
    Ye, Xiaojing
    Zhang, Qingchao
    SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (04): : 1532 - 1564
  • [49] A robust gradient sampling algorithm for nonsmooth, nonconvex optimization
    Burke, JV
    Lewis, AS
    Overton, ML
    SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (03) : 751 - 779
  • [50] A PRECONDITIONED ALTERNATING MINIMIZATION FRAMEWORK FOR NONCONVEX AND HALF QUADRATIC REGULARIZATION
    Deng, Shengxiang
    Ben Ayed, Ismail
    Sun, Hongpeng
    INVERSE PROBLEMS AND IMAGING, 2024, 18 (04) : 1024 - 1051