Preparation and performance study of porous biochar-based shape-stabilized phase change materials for thermal energy storage

被引:0
|
作者
Zhang, Yan [1 ]
Yan, Jiajuan [1 ]
Xie, Haiwei [1 ]
Luo, Jianyun [1 ]
机构
[1] Tianjin Univ Commerce, Sch Mech Engn, Tianjin 300134, Peoples R China
关键词
Biochar; Melon-seed shells; Composite phase change material; Thermal energy storage; STEARIC-ACID; CARBON NANOTUBES; COMPOSITE; CONDUCTIVITY; ENHANCEMENT; CAPACITY; GRAPHENE; BEHAVIOR; STRAW; HEAT;
D O I
10.1007/s13399-024-05891-w
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The reasonable utilization of waste biomass can contribute to the energy system. In this study, waste melon-seed shells were used as raw materials to prepare porous biochar (MSB) as the support skeleton and thermal conductive additive for stearic acid (SA), thereby improving the thermal conductivity of the SA and solving the issue of their melting leakage. Melon-seed shell biochar-based composite phase change materials (MSB-PCMs) were prepared through melt blending and compression molding. The research shows that MSB, synthesized at a pyrolysis temperature of 600 degrees C, exhibited a three-dimensional porous structure along with two-dimensional sheet-like morphology which facilitated additional heat transfer pathways within SA. When incorporating 25 wt% of MSB into the SA (MSB-PCM5), the thermal conductivity was significantly enhanced in the resulting MSB-PCM5 by up to 287.22%. Moreover, the phase change process remained leak-free without deformation, and the latent heat value only deviated from theoretical values by a margin of 0.88%. Heat response tests demonstrated that heating and cooling times for MSB-PCMs outperformed those for pure SA; specifically, a reduction in heating time by 19.5% and cooling time by 31.77% was observed for MSB-PCM5. Comprehensive evaluation after subjecting them to 200 cycles of melting-solidification tests indicated excellent shape stability and thermal performance for MSB-PCMs. Therefore, porous biochar, as a supporting skeleton and thermal conductivity additive of phase change materials, has great potential in phase change energy storage applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Preparation and thermal characterization of oxalic acid dihydrate/bentonite composite as shape-stabilized phase change materials for thermal energy storage
    Han, Lipeng
    Xie, Shaolei
    Sun, Jinhe
    Jia, Yongzhong
    17TH IUMRS INTERNATIONAL CONFERENCE IN ASIA (IUMRS-ICA 2016), 2017, 182
  • [32] A review of porous carbon-based shape-stabilized phase change materials for heat storage
    Feng L.
    Hou Y.
    Yu R.
    Zhao L.
    Liu Y.
    Meitan Xuebao/Journal of the China Coal Society, 2022, 47 (09): : 3328 - 3338
  • [33] Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage
    Li, Jingruo
    He, Lihong
    Liu, Tangzhi
    Cao, Xuejuan
    Zhu, Hongzhou
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 118 : 48 - 53
  • [34] Preparation of hydrophobic lauric acid/SiO2 shape-stabilized phase change materials for thermal energy storage
    Zhang, Ying
    Zhang, Jiasheng
    Li, Xiangqi
    Wu, Xiao
    JOURNAL OF ENERGY STORAGE, 2019, 21 : 611 - 617
  • [35] Modified mesoporous silica filled with PEG as a shape-stabilized phase change materials for improved thermal energy storage performance
    Feng, Daili
    Feng, Yanhui
    Li, Pei
    Zang, Yuyang
    Wang, Chen
    Zhang, Xinxin
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 292
  • [36] A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings
    Gandhi, Monika
    Kumar, Ashok
    Elangovan, Rajasekar
    Meena, Chandan Swaroop
    Kulkarni, Kishor S.
    Kumar, Anuj
    Bhanot, Garima
    Kapoor, Nishant R.
    SUSTAINABILITY, 2020, 12 (22) : 1 - 17
  • [37] Self-luminous, shape-stabilized porous ethyl cellulose phase-change materials for thermal and light energy storage
    Suhaib Shuaib Adam Shuaib
    Zixuan Niu
    Zhiyi Qian
    Shengyang Qi
    Weizhong Yuan
    Cellulose, 2023, 30 : 1841 - 1855
  • [38] Self-luminous, shape-stabilized porous ethyl cellulose phase-change materials for thermal and light energy storage
    Shuaib, Suhaib Shuaib Adam
    Niu, Zixuan
    Qian, Zhiyi
    Qi, Shengyang
    Yuan, Weizhong
    CELLULOSE, 2023, 30 (03) : 1841 - 1855
  • [39] Preparation and thermal properties of stearic acid/titanium dioxide composites as shape-stabilized phase change materials for building thermal energy storage
    Tang, Fang
    Cao, Lei
    Fang, Guiyin
    ENERGY AND BUILDINGS, 2014, 80 : 352 - 357
  • [40] Preparation and Properties of Paraffin/PMMA Shape-stabilized Phase Change Material for Building Thermal Energy Storage
    孟多
    ZHAO Kang
    WANG Anqi
    WANG Baomin
    Journal of Wuhan University of Technology(Materials Science), 2020, 35 (01) : 231 - 239