Numerical parametric study of cross-laminated timber diaphragms under in-plane loading

被引:1
|
作者
Fakhrzarei, Mahboobeh [1 ]
Daneshvar, Hossein [1 ]
Chui, Ying Hei [1 ]
机构
[1] Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cross-Laminated Timber (CLT); Diaphragm behaviour; In -plane loading; Finite element modelling (FEM); Connection stiffness; CONNECTIONS;
D O I
10.1016/j.conbuildmat.2024.136387
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Cross-Laminated Timber (CLT) is a mass timber product that has gained recognition as a viable structural product for tall and large structures. While CLT provides several advantages, such as being eco-friendly, lightweight, and improving thermal insulation compared to other primary structural materials, its application in the horizontal diaphragms, specifically for floors and roofs, has not been thoroughly investigated. This paper presents the development of a detailed finite element (FE) model capable of simulating the response of CLT diaphragms under in-plane loading. The accuracy of the developed models was evaluated through comparison with available experimental data. Additionally, a comprehensive parametric study was conducted to examine the influence of various factors, including connection stiffness, boundary condition, panel installation pattern, and panel thickness, on the in-plane deflection of the CLT diaphragm. The research indicates that panel-to-panel connections play a more critical role in determining the stiffness of CLT structures than panel-to-beam connections. Furthermore, it was demonstrated that the deflection of CLT panels was influenced by different parameters depending on the orientation of the applied load. When the load is applied perpendicular to the panel length, panel thickness influences the diaphragm deformation. Conversely, when the load is applied parallel to the panel length, the panel-to-panel connection stiffness has a more significant effect on the deformation of the diaphragm. Findings also revealed that staggered CLT panel layouts provided more load distribution and higher capacity compared to non-staggered layouts when the load was applied perpendicular to the panel length.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Influence of laminate direction and glue area on in-plane shear modulus of cross-laminated timber
    Jonas Turesson
    Zahra Sharifi
    Sven Berg
    Mats Ekevad
    SN Applied Sciences, 2020, 2
  • [22] A Review of the Methods for Predicting the Effective In-Plane Shear Modulus of Cross-Laminated Timber (CLT)
    Khan, Mehsam Tanzim
    Chui, Ying Hei
    Huang, Dongsheng
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [23] Elastic response of cross-laminated engineered bamboo panels subjected to in-plane loading
    Archila, Hector F.
    Rhead, Andrew
    Ansell, Martin P.
    Walker, Pete
    Lizarazo-Marriaga, Juan
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2019, 172 (06) : 284 - 295
  • [24] Ultimate failure load analysis of cross-laminated timber panels subjected to in-plane compression
    Heinisuo, Markku
    Pajunen, Sami
    Aspila, Aku
    STRUCTURES, 2023, 47 : 1558 - 1565
  • [25] Influence of laminate direction and glue area on in-plane shear modulus of cross-laminated timber
    Turesson, Jonas
    Sharifi, Zahra
    Berg, Sven
    Ekevad, Mats
    SN APPLIED SCIENCES, 2020, 2 (12):
  • [26] Behavior of Steel Plate-Reinforced Cross-Laminated Timber Panels under Out-of-Plane Loading
    Faley, Cameron T.
    Motter, Christopher J.
    Phillips, Adam R.
    JOURNAL OF STRUCTURAL ENGINEERING, 2025, 151 (04)
  • [27] Behaviour of cross-laminated timber wall systems under monotonic lateral loading
    Hughes, C.
    McPolin, D.
    McGetrick, P.
    McCrum, D.
    JOURNAL OF STRUCTURAL INTEGRITY AND MAINTENANCE, 2019, 4 (03) : 153 - 161
  • [28] Numerical Analysis of Cross-Laminated Timber (CLT) Buildings: A Parametric Study on Steel Connectors When Subjected to Seismic Loading Under Eurocode 8 and NBR 15421
    Victoria, Lucas C.
    Aquino, Caroline D.
    Branco, Jorge M.
    Miguel, Leticia Fleck Fadel
    BUILDINGS, 2025, 15 (05)
  • [29] Experimental investigation on the effect of openings on the in-plane shear strength and stiffness of cross-laminated timber panels
    Aljuhmani, Ahmad Ghazi
    Alwashali, Hamood
    Ogasawara, Ayaka
    Atsuzawa, Eito
    Maeda, Masaki
    Seki, Matsutaro
    ENGINEERING STRUCTURES, 2022, 254
  • [30] Assessment and comparison of experimental and numerical model studies of cross-laminated timber mechanical connections under cyclic loading
    Schneider, J.
    Shen, Y.
    Stiemer, S. F.
    Tesfamariam, S.
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 77 : 197 - 212