Long-Term Genistein Consumption Modifies Gut Microbiota, Improving Glucose Metabolism, Metabolic Endotoxemia, and Cognitive Function in Mice Fed a High-Fat Diet

被引:61
|
作者
Lopez, Patricia [1 ]
Sanchez, Monica [1 ]
Perez-Cruz, Claudia [2 ]
Velazquez-Villegas, Laura A. [1 ,3 ]
Syeda, Tauqeerunnisa [2 ]
Aguilar-Lopez, Miriam [1 ,4 ]
Rocha-Viggiano, Ana K. [1 ]
del Carmen Silva-Lucero, Maria [2 ,5 ]
Torre-Villalvazo, Ivan [1 ]
Noriega, Lilia G. [1 ]
Torres, Nimbe [1 ]
Tovar, Armando R. [1 ]
机构
[1] Inst Nacl Ciencias Med & Nutr Salvador Zubiran, Dept Fisiol Nutr, Ave Vasco de Quiroga 15, Mexico City 14080, DF, Mexico
[2] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Farmacol, Ave Politecn Nacl 2508, Mexico City 07360, DF, Mexico
[3] Ecole Polytech Fed Lausanne, Lab Metab Signalling, Lausanne, Switzerland
[4] Univ Illinois, Dept Food Sci & Human Nutr, Champaign, IL USA
[5] Univ Politecn Huatusco, Huatusco, Veracruz, Mexico
关键词
cognitive damage; genistein; gut microbiota; lipopolysaccharide; neuroinflammation; INDUCED OBESITY; SOY ISOFLAVONES; DOUBLE-BLIND; BONE LOSS; INSULIN; ACTIVATION; LIVER; INFLAMMATION; PERMEABILITY; HIPPOCAMPUS;
D O I
10.1002/mnfr.201800313
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Scope: The aim of this study is to assess whether the long-term addition of genistein to a high-fat diet can ameliorate the metabolic and the cognitive alterations and whether the changes can be associated with modifications to the gut microbiota. Methods and results: C57/BL6 mice were fed either a control (C) diet, a high-fat (HF) diet, or a high-fat diet containing genistein (HFG) for 6 months. During the study, indirect calorimetry, IP glucose tolerance tests, and behavioral analyses were performed. At the end of the study, plasma, liver, brain, and fecal samples were collected. The results showed that mice fed the HFG diet gained less weight, had lower serum triglycerides, and an improvement in glucose tolerance than those fed an HF diet. Mice fed the HFG diet also modified the gut microbiota that was associated with lower circulating levels of lipopolysaccharide (LPS) and reduced expression of pro-inflammatory cytokines in the liver compared to those fed HF diet. The reduction in LPS by the consumption of genistein was accompanied by an improvement of the cognitive function. Conclusions: Genistein is able to regulate the gut microbiota, reducing metabolic endotoxemia and decreasing the neuroinflammatory response despite the consumption of a HF diet.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Gut microbiota mediates positive effects of liraglutide on dyslipidemia in mice fed a high-fat diet
    Zhao, Li
    Qiu, Yue
    Zhang, Panpan
    Wu, Xunan
    Zhao, Zhicong
    Deng, Xia
    Yang, Ling
    Wang, Dong
    Yuan, Guoyue
    FRONTIERS IN NUTRITION, 2022, 9
  • [42] Modulation of the Gut Microbiota by Krill Oil in Mice Fed a High-Sugar High-Fat Diet
    Lu, Chenyang
    Sun, Tingting
    Li, Yanyan
    Zhang, Dijun
    Zhou, Jun
    Su, Xiurong
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [43] Long-term intake of rice improves insulin sensitivity in mice fed a high-fat diet
    Choi, Won Hee
    Um, Min Young
    Ahn, Jiyun
    Jung, Chang Hwa
    Ha, Tae Youl
    NUTRITION, 2014, 30 (7-8) : 920 - 927
  • [44] Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice
    Campbell, C. Linda
    Yu, Renqiang
    Li, Fengzhi
    Zhou, Qin
    Chen, Daozhen
    Qi, Ce
    Yin, Yongxiang
    Sun, Jin
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2019, 12 : 97 - 107
  • [45] Dietary -cyclodextrin modifies gut microbiota and reduces fat accumulation in high-fat-diet-fed obese mice
    Nihei, Nanako
    Okamoto, Hinako
    Furune, Takahiro
    Ikuta, Naoko
    Sasaki, Kengo
    Rimbach, Gerald
    Yoshikawa, Yutaka
    Terao, Keiji
    BIOFACTORS, 2018, 44 (04) : 336 - 347
  • [46] Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice
    Cani, Patrice D.
    Bibiloni, Rodrigo
    Knauf, Claude
    Neyrinck, Audrey M.
    Neyrinck, Audrey M.
    Delzenne, Nathalle M.
    Burcelin, Remy
    DIABETES, 2008, 57 (06) : 1470 - 1481
  • [47] Effects of fish protein with glycation extent on gut microbiota and colonic barrier function in mice fed a high-fat diet
    Cao, Caocao
    Tang, Mingjun
    Zhao, Nana
    Dong, Shiyuan
    Wu, Haohao
    JOURNAL OF FUNCTIONAL FOODS, 2021, 85
  • [48] Effect of Oryzanol and Ferulic Acid on the Glucose Metabolism of Mice Fed with a High-Fat Diet
    Son, Myoung Jin
    Rico, Catherine W.
    Nam, Seok Hyun
    Kang, Mi Young
    JOURNAL OF FOOD SCIENCE, 2011, 76 (01) : H7 - H10
  • [49] N-Acetylcysteine alleviates gut dysbiosis and glucose metabolic disorder in high-fat diet-fed mice
    Zheng, Junping
    Yuan, Xubing
    Zhang, Chen
    Jia, Peiyuan
    Jiao, Siming
    Zhao, Xiaoming
    Yin, Heng
    Du, Yuguang
    Liu, Hongtao
    JOURNAL OF DIABETES, 2019, 11 (01) : 32 - 45
  • [50] Lead exposure aggravates glucose metabolism disorders through gut microbiota dysbiosis and intestinal barrier damage in high-fat diet-fed mice
    Wang, Nana
    Gao, Xue
    Huo, Yuan
    Li, Yuting
    Cheng, Fangru
    Zhang, Zengli
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2024, 104 (05) : 3057 - 3068