Classifying Melanoma in ISIC Dermoscopic Images Using Efficient Convolutional Neural Networks and Deep Transfer Learning

被引:0
|
作者
Mahmoud, Habeba [1 ]
Omer, Osama A. [1 ]
Ragab, Shimaa [1 ]
Esmaiel, Hamada [1 ,2 ]
Abdel-Nasser, Mohamed [1 ]
机构
[1] Aswan Univ, Aswan Fac Engn, Dept Elect Engn, Aswan 81542, Egypt
[2] A Sharqiyah Univ, Dept Elect & Commun Engn, Coll Engn, POB 42, Ibra 400, Oman
关键词
skin cancer; image classification; precise Computer-Aided Diagnosis (CAD); deep learning; Convolutional Neural Network (CNN); dermoscopic images; MALIGNANT-MELANOMA; CLASSIFICATION;
D O I
10.18280/ts.410211
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Melanoma, recognized as the most life-threatening form of skin cancer, poses a significant threat to life expectancy. The timely identification of melanoma plays a crucial role in mitigating the morbidity and mortality associated with skin cancer. Dermoscopic images, acquired through advanced dermoscopic tools, serve as vital resources for the early detection of skin cancer. Hence, there is an urgent need to develop a reliable and accurate Computer-Aided Diagnosis (CAD) system capable of autonomously discerning skin cancer. This study focuses on the meticulous construction of diverse skin cancer classification models, specifically employing various Convolutional Neural Network (CNN) architectures configured across four distinct layer arrangements. Additionally, a transfer learning approach is explored, leveraging robust pre-trained deep CNN models extensively trained on the comprehensive ISIC dermoscopic image dataset, known for its diversity in skin lesions. Utilizing the ISIC dataset as the foundation of our analysis, the CNN model's performance is systematically evaluated with varying numbers of layers-ranging from 15 to 27. Results indicate that the CNN model comprising 15 layers achieves an accuracy of 89.55%, while the model with 27 layers exhibits the highest performance, attaining an accuracy of 90.85%. In the realm of transfer learning, ten baseline CNN models pre-trained on ImageNet are employed. All baseline models demonstrate accuracies surpassing 80%, with SqueezeNet recording the lowest accuracy at 80.89%. In contrast, the ResNet-50 model consistently outperforms other models in transfer learning, achieving an accuracy of 92.98%. These findings underscore the efficacy of the proposed models in melanoma classification and highlight the superior performance of the ResNet-50 model in the context of transfer learning.
引用
收藏
页码:679 / 691
页数:13
相关论文
共 50 条
  • [21] Deep Neural Network for Melanoma Classification in Dermoscopic Images
    Wang Jiahao
    Jin Xingguang
    Yuan, Wenjie
    Luo, Zhenyi
    Yu, Zhengyang
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 666 - 669
  • [22] Classifying Malware Traffic Using Images and Deep Convolutional Neural Network
    Davis Jr, R. E.
    Xu, Jingsheng
    Roy, Kaushik
    IEEE ACCESS, 2024, 12 : 58031 - 58038
  • [23] An Efficient Machine Learning Approach for the Detection of Melanoma using Dermoscopic Images
    Waheed, Zahra
    Zafar, Madeeha
    Waheed, Amna
    Riaz, Farhan
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTING AND DIGITAL SYSTEMS (C-CODE), 2017, : 316 - 319
  • [24] Classifying Images Using Restricted Boltzmann Machines and Convolutional Neural Networks
    Zhao, Zhijun
    Xu, Tongde
    Dai, Chenyu
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [25] Ensembles of Deep Convolutional Neural Networks for Detecting Melanoma in Dermoscopy Images
    Tziomaka, Melina
    Maglogiannis, Ilias
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 523 - 535
  • [26] Deep Transfer Learning for Bearing Fault Diagnosis using CWT Time–Frequency Images and Convolutional Neural Networks
    Said Djaballah
    Kamel Meftah
    Khaled Khelil
    Mounir Sayadi
    Journal of Failure Analysis and Prevention, 2023, 23 : 1046 - 1058
  • [27] Classifying Melanoma Skin Lesions Using Convolutional Spiking Neural Networks With Unsupervised STDP Learning Rule
    Zhou, Qian
    Shi, Yan
    Xu, Zhenghua
    Qu, Ruowei
    Xu, Guizhi
    IEEE ACCESS, 2020, 8 : 101309 - 101319
  • [28] Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition
    Winkler, Julia K.
    Fink, Christine
    Toberer, Ferdinand
    Enk, Alexander
    Deinlein, Teresa
    Hofmann-Wellenhof, Rainer
    Thomas, Luc
    Lallas, Aimilios
    Blum, Andreas
    Stolz, Wilhelm
    Haenssle, Holger A.
    JAMA DERMATOLOGY, 2019, 155 (10) : 1135 - 1141
  • [29] Chickpea varietal classification using deep convolutional neural networks with transfer learning
    Saha, Dhritiman
    Manickavasagan, Annamalai
    JOURNAL OF FOOD PROCESS ENGINEERING, 2022, 45 (03)
  • [30] Physical Activity Recognition using Deep Transfer Learning with Convolutional Neural Networks
    Ataseven, Berke
    Madani, Alireza
    Semiz, Beren
    Gursoy, M. Emre
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 103 - 108