HFAD: Homomorphic Filtering Adversarial Defense Against Adversarial Attacks in Automatic Modulation Classification

被引:0
|
作者
Zhang, Sicheng [1 ]
Lin, Yun [1 ]
Yu, Jiarun [1 ]
Zhang, Jianting [2 ]
Xuan, Qi [3 ]
Xu, Dongwei [3 ]
Wang, Juzhen [4 ]
Wang, Meiyu [5 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150000, Peoples R China
[2] China Peoples Liberat Army Gen Equipment Dept, Unit Peoples Liberat Army China 91977, Beijing 100036, Peoples R China
[3] Zhejiang Univ Technol, Inst Cyberspace Secur, Hangzhou 310023, Peoples R China
[4] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
[5] Hangzhou Dianzi Univ, Coll Commun Engn, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Automatic modulation classification; adversarial attacks; adversarial defense; frequency domain; homomorphic filtering;
D O I
10.1109/TCCN.2024.3360514
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Deep neural networks provide intelligent solutions for Automatic Modulation Classification (AMC) tasks in the field of communication. However, their susceptibility to adversarial examples due to the interpretability problem presents a challenge as it leads to anomalous decisions. Emerging studies suggest that the high-frequency constituents within signals constitute a fundamental source of adversarial vulnerability. To address this issue, this paper introduces a Homomorphic Filtering Adversarial Defense (HFAD) algorithm that aims to effectively defend against adversarial examples by applying frequency domain filtering on the signal. This approach enhances the security and reliability of the AMC model by attenuating high-frequency components of the signal through homomorphic filtering, thereby reducing errors caused by adversarial perturbations on model outputs. The robustness of the AMC model is further enhanced through the integration of HFAD with data augmentation strategies. Experimental results demonstrate that the proposed defense algorithm not only maintains high signal recognition accuracy but also preserves communication signal transmission quality. Moreover, HFAD effectively withstands a wide range of white-box adversarial attacks and demonstrates resilience against black-box adversarial attacks, thereby enhancing the robustness of the AMC model against adversarial examples and exhibiting strong transfer performance.
引用
收藏
页码:880 / 892
页数:13
相关论文
共 50 条
  • [21] Adversarial Attacks and Defense on an Aircraft Classification Model Using a Generative Adversarial Network
    Colter, Jamison
    Kinnison, Matthew
    Henderson, Alex
    Harbour, Steven
    2023 IEEE/AIAA 42ND DIGITAL AVIONICS SYSTEMS CONFERENCE, DASC, 2023,
  • [22] (Compress and Restore)N : A Robust Defense Against Adversarial Attacks on Image Classification
    Ferrari, Claudio
    Becattini, Federico
    Galteri, Leonardo
    Del Bimbo, Alberto
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (01)
  • [23] Adaptive Image Reconstruction for Defense Against Adversarial Attacks
    Yang, Yanan
    Shih, Frank Y.
    Chang, I-Cheng
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (12)
  • [24] Cyclic Defense GAN Against Speech Adversarial Attacks
    Esmaeilpour, Mohammad
    Cardinal, Patrick
    Koerich, Alessandro Lameiras
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1769 - 1773
  • [25] Deep Learning Defense Method Against Adversarial Attacks
    Wang, Ling
    Zhang, Cheng
    Liu, Jie
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3667 - 3671
  • [26] Defensive Bit Planes: Defense Against Adversarial Attacks
    Tripathi, Achyut Mani
    Behera, Swarup Ranjan
    Paul, Konark
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [27] Detection defense against adversarial attacks with saliency map
    Ye, Dengpan
    Chen, Chuanxi
    Liu, Changrui
    Wang, Hao
    Jiang, Shunzhi
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10193 - 10210
  • [28] DEFENSE AGAINST ADVERSARIAL ATTACKS ON SPOOFING COUNTERMEASURES OF ASV
    Wu, Haibin
    Liu, Songxiang
    Meng, Helen
    Lee, Hung-yi
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 6564 - 6568
  • [29] Symmetry Defense Against CNN Adversarial Perturbation Attacks
    Lindqvist, Blerta
    INFORMATION SECURITY, ISC 2023, 2023, 14411 : 142 - 160
  • [30] Universal Inverse Perturbation Defense Against Adversarial Attacks
    Chen J.-Y.
    Wu C.-A.
    Zheng H.-B.
    Wang W.
    Wen H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (10): : 2172 - 2187