HYPERELLIPTIC INTEGRALS AND SPECIAL FUNCTIONS FOR THE SPATIAL VARIATIONAL PROBLEM

被引:0
|
作者
Levitskii, B. E. [1 ]
Ignatenko, A. S. [1 ]
机构
[1] Kuban State Univ, 149 Stavropolskaya St, Krasnodar 350040, Russia
来源
PROBLEMY ANALIZA-ISSUES OF ANALYSIS | 2024年 / 13卷 / 02期
关键词
special functions; hyperelliptic integrals; modulus of a family of surfaces; variational problem;
D O I
10.15393/j3.art.2024.15371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The study of the properties of special functions plays an important role in solving many problems in geometric function theory. We study the properties of hyperelliptic integrals and special functions, which definition includes a parameter that depends on the dimension of the space. The appearance of these functions is associated with the solution of a specific variational problem of finding in n-dimensional Euclidean space a surface that has the smallest area in a given metric among the hypersurfaces formed by rotation around the polar axis of a plane curve connecting two fixed points in the upper half -plane.
引用
收藏
页码:84 / 105
页数:22
相关论文
共 50 条
  • [41] Approximation of highly oscillatory integrals containing special functions
    Zaman, Sakhi
    Siraj-ul-Islam
    Hussain, Iqrar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 365
  • [42] Certain Finite Integrals Related to the Products of Special Functions
    Kumar, Dinesh
    Ayant, Frederic
    Asawasamrit, Suphawat
    Tariboon, Jessada
    SYMMETRY-BASEL, 2021, 13 (11):
  • [43] A third integrating factor for indefinite integrals of special functions
    Conway, John T.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (12) : 941 - 954
  • [44] Elliptic beta integrals and special functions of hypergeometric type
    Spiridonov, VP
    INTEGRABLE STRUCTURES OF EXACTLY SOLVABLE TWO-DIMENSIONAL MODELS OF QUANTUM FIELD THEORY, 2001, 35 : 305 - 313
  • [45] Moments on Riemann surfaces and hyperelliptic Abelian integrals
    Gavrilov, Lubomir
    Pakovich, Fedor
    COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (01) : 125 - 155
  • [46] A SPECIAL SPATIAL EQUILIBRIUM PROBLEM
    PANG, JS
    YU, CS
    NETWORKS, 1984, 14 (01) : 75 - 81
  • [47] Hyperelliptic integrals and generalized arithmetic–geometric mean
    Jeroen Spandaw
    Duco van Straten
    The Ramanujan Journal, 2012, 28 : 61 - 78
  • [48] COMPUTING HYPERELLIPTIC INTEGRALS FOR SURFACE MEASURE OF ELLIPSOIDS
    DUNKL, CF
    RAMIREZ, DE
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1994, 20 (04): : 413 - 426
  • [49] Modular Form Representation for Periods of Hyperelliptic Integrals
    Eilers, Keno
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [50] On some hyperelliptic Hurwitz-Hodge integrals
    Lewanski, Danilo
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2023, 175 (02) : 271 - 284