Artificial Intelligence - Enabled Deep Learning Model for Diabetes Prediction Using Deep Belief Network with Bayesian Optimization

被引:0
|
作者
Akinsola, Jide Ebenezer Taiwo [1 ]
Ajagbe, Sunday Adeola [2 ]
Olajubu, Emmanuel Ajayi [3 ]
Lawal, Azeezat Oluwayemisi [1 ]
Aderounmu, Ganiyu Adesola [3 ]
Adigun, Matthew Olusegun [4 ]
机构
[1] First Tech Univ, Dept Comp Sci, Ibadan, Nigeria
[2] First Tech Univ, Dept Comp & Ind Engn, Ibadan, Nigeria
[3] Obafemi Awolowo Univ, Dept Comp Sci & Engn, Ife, Nigeria
[4] Univ Zululand, Dept Comp Sci, Kwa Dlangezwa, South Africa
关键词
bayesian optimization; deep belief network; deep learning; diabetes; recurrent neural network;
D O I
10.1109/CSCI62032.2023.00063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diabetes is one of the major health issues that affect more than 10.5 percent of the adult population across the globe. This study applied deep learning techniques of deep belief network (DBN), long short-term memory (LSTM) and recurrent neural network (RNN) with Bayesian optimization on a diabetes dataset to forecast patients with diabetes. A splitting ratio of 80:20 was used for model performance evaluation. DBN model had the lowest mean absolute error in comparison to the other two models with 95.79% accuracy, 0.0331 mean absolute error, 0.0709 mean squared error, 0.1204 loss function, 0.9458 precision, 0.1819 RAISE, and 0.5307 recall. The results from this study validate that the DBN model can be used on a larger dataset to reduce variance and model overfitting, thereby achieving a better accuracy score.
引用
收藏
页码:353 / 358
页数:6
相关论文
共 50 条
  • [21] Early Prediction of Diabetes Using Deep Learning Convolution Neural Network and Harris Hawks Optimization
    Murugadoss, R.
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2021, 13 (01): : 88 - 100
  • [22] Identification of lung cancer using archimedes flow regime optimization enabled deep belief network
    Gampala V.
    Ramya V.
    Maram B.
    Pappu S.R.
    Multimedia Tools and Applications, 2024, 83 (32) : 78659 - 78688
  • [23] DoS attack detection using Aquila deer hunting optimization enabled deep belief network
    Thomas, Merly
    Meshram, B. B.
    INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2024, 20 (01) : 66 - 87
  • [24] Optimal Deep Belief Network Enabled Malware Detection and Classification Model
    Chandran, P. Pandi
    Rajini, N. Hema
    Jeyakarthic, M.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (03): : 3349 - 3364
  • [25] Artificial intelligence, machine learning, and deep learning for clinical outcome prediction
    Pettit, Rowland W.
    Fullem, Robert
    Cheng, Chao
    Amos, Christopher I.
    EMERGING TOPICS IN LIFE SCIENCES, 2021, 5 (06) : 729 - 745
  • [26] Type 2 Diabetes Risk Prediction Using Deep Convolutional Neural Network Based-Bayesian Optimization
    Alqushaibi, Alawi
    Hasan, Mohd Hilmi
    Abdulkadir, Said Jadid
    Muneer, Amgad
    Gamal, Mohammed
    Al-Tashi, Qasem
    Taib, Shakirah Mohd
    Alhussian, Hitham
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (02): : 3223 - 3238
  • [27] Prediction and optimization model of sustainable concrete properties using machine learning, deep learning and swarm intelligence: A review
    Wang, Shiqi
    Xia, Peng
    Chen, Keyu
    Gong, Fuyuan
    Wang, Hailong
    Wang, Qinghe
    Zhao, Yuxi
    Jin, Weiliang
    JOURNAL OF BUILDING ENGINEERING, 2023, 80
  • [28] Deep learning/artificial intelligence and the epigenomic prediction of coarctation of the aorta
    Bahado-Singh, Ray
    Vishweswaraiah, Sangeetha
    Sayed, Nazia M.
    Aydas, Buket
    Veerappa, Avinash M.
    Mishra, Nitish K.
    Guda, Chittibabu
    Radhakrishna, Uppala
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2019, 220 (01) : S50 - S50
  • [29] Artificial Intelligence and Deep Learning in Stock Prediction: A Bibliometric Review
    Lin, Chin Yang
    Lobo Marques, João Alexandre
    Chan, Lin Kun
    Proceedings of the European Conference on Management, Leadership and Governance, 2024, 20 (01): : 297 - 306
  • [30] Reduction of Overfitting in Diabetes Prediction Using Deep Learning Neural Network
    Ashiquzzaman, Akm
    Tushar, Abdul Kawsar
    Islam, Md. Rashedul
    Shon, Dongkoo
    Im, Kichang
    Park, Jeong-Ho
    Lim, Dong-Sun
    Kim, Jongmyon
    IT CONVERGENCE AND SECURITY 2017, VOL 1, 2018, 449 : 35 - 43