SUMMING THE LARGEST PRIME FACTOR OVER INTEGER SEQUENCES

被引:0
|
作者
De Koninck, Jean-Marie [1 ]
Jakimczuk, Rafael [2 ]
机构
[1] Univ Laval, Dept Math, Quebec City, PQ, Canada
[2] Univ Nacl Lujan, Div Matemat, Buenos Aires, Argentina
来源
关键词
Largest prime factor function; square-free numbers; square-full numbers;
D O I
10.33044/revuma.3154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the behaviour of P ABSTRACT. Given an integer n >= 2, let P( n) stand for its largest prime factor. n <= x n is an element of A P( n) in the case of two sets A, namely the set of r -free numbers and the set of h -full numbers.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 50 条
  • [41] On the largest prime factor of numerators of Bernoulli numbers
    Berczes, Attila
    Luca, Florian
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (1-2): : 128 - 134
  • [42] On the largest prime factor of the partition function of n
    Luca, Florian
    RAMANUJAN JOURNAL, 2012, 28 (03): : 423 - 434
  • [43] SOME OBSERVATIONS ON THE GREATEST PRIME FACTOR OF AN INTEGER
    Jakimczuk, Rafael
    ANNALES MATHEMATICAE SILESIANAE, 2023, 37 (01) : 67 - 81
  • [44] NORMAL NUMBERS AND THE MIDDLE PRIME FACTOR OF AN INTEGER
    De Koninck, Jean Marie
    Katai, Imre
    COLLOQUIUM MATHEMATICUM, 2014, 135 (01) : 69 - 77
  • [45] On the distribution function of the kth prime factor of an integer
    De Koninck, JM
    Tenenbaum, G
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 133 : 191 - 204
  • [46] SUMS INVOLVING THE SMALLEST PRIME FACTOR OF AN INTEGER
    CAO, HZ
    UTILITAS MATHEMATICA, 1994, 45 : 245 - 251
  • [47] A Review Study of Prime Period Perfect Gaussian Integer Sequences
    Chang, Ho-Hsuan
    Guan, Shiqi
    Zeng, Miaowang
    Chen, Peiyao
    AXIOMS, 2024, 13 (03)
  • [48] Metrical theorems on prime values of the integer parts of real sequences
    Harman, G
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1997, 75 : 481 - 496
  • [49] THE GREATEST PRIME FACTOR AND RECURRENT SEQUENCES
    Back, Greg
    Caragiu, Mihai
    FIBONACCI QUARTERLY, 2010, 48 (04): : 358 - 362
  • [50] MULTIDIMENSIONAL GREATEST PRIME FACTOR SEQUENCES
    Caragiu, Mihai
    Sutherl, Lauren
    Zaki, Mohammad
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2011, 23 (02): : 187 - 195