Surface Electron Reconstruction of Catalyst Through Alloying Strategy for Accelerating Sulfur Conversion in Lithium-Sulfur Batteries

被引:10
|
作者
Zuo, Yinze [1 ]
Jiao, Xuechao [1 ]
Huang, Zheng [1 ]
Lei, Jie [1 ]
Liu, Mingquan [1 ]
Dong, Li [2 ]
Yan, Wei [1 ]
Zhang, Jiujun [1 ]
机构
[1] Fuzhou Univ, Sch Mat Sci & Engn, Fuzhou 350108, Fujian, Peoples R China
[2] Anhui Leoch Renewable energy Dev Co Ltd, Huaibei 235000, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
chemisorption; electrocatalyst; electrochemical kinetics; FeCoNi; lithium-sulfur batteries; CATHODE;
D O I
10.1002/adfm.202405853
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Alloy catalyst is considered to be an important strategy to solve the shuttle effect and sluggish kinetics of lithium-sulfur batteries (LSBs). However, the effect of the electronic structure of the alloy catalyst on the sulfur conversion process has not been effectively analyzed. In this paper, based on alloying strategy, the electronic structure of such a FeCoNi catalyst is regulated and optimized, and the sulfur adsorption configuration and catalytic conversion process are defined. The in situ Raman spectroscopy and the density functional theory (DFT) are employed to deeply understand the catalytic mechanism of such a sulfur conversion. A cell with FeCoNi modified separator delivers an ultra-low capacity attenuation of 0.056% per cycle over 1000 cycles at 3 C. The outstanding anti-self-discharge performance of 8.1% over 7 days is also achieved. Furthermore, the obtained cell with a high sulfur loading of 9.7 mg cm-2 and lean electrolyte of 5.6 mu L mgs-1 exhibits 81% capacity retention after 100 cycles, providing a research prospect for the practical application of lithium-sulfur batteries. Based on the intrinsic electronic structure of the alloy catalyst, the surface electronic reconstruction process of the alloy catalyst is analyzed, and its catalytic mechanism in the sulfur conversion process is elucidated, which provides a new idea for the development of alloy catalyst and lithium sulfur battery. image
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Electrocatalysts in lithium-sulfur batteries
    Wang, Shanying
    Wang, Ziwei
    Chen, Fangzheng
    Peng, Bo
    Xu, Jie
    Li, Junzhe
    Lv, Yaohui
    Kang, Qi
    Xia, Ailin
    Ma, Lianbo
    NANO RESEARCH, 2023, 16 (04) : 4438 - 4467
  • [22] Electrocatalysts in lithium-sulfur batteries
    Shanying Wang
    Ziwei Wang
    Fangzheng Chen
    Bo Peng
    Jie Xu
    Junzhe Li
    Yaohui Lv
    Qi Kang
    Ailin Xia
    Lianbo Ma
    Nano Research, 2023, 16 : 4438 - 4467
  • [23] Catalysis in Lithium-Sulfur Batteries
    Pan, Fusheng
    Yao, Yuan
    Sun, Jie
    PROGRESS IN CHEMISTRY, 2021, 33 (03) : 442 - 461
  • [24] Polymers in Lithium-Sulfur Batteries
    Zhang, Qing
    Huang, Qihua
    Hao, Shu-Meng
    Deng, Shuyi
    He, Qiming
    Lin, Zhiqun
    Yang, Yingkui
    ADVANCED SCIENCE, 2022, 9 (02)
  • [25] Cycling lithium-sulfur batteries
    Kolosnitsyn, VS
    Karaseva, EV
    Amineva, NA
    Batyrshina, GA
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2002, 38 (03) : 329 - 331
  • [26] Rechargeable Lithium-Sulfur Batteries
    Manthiram, Arumugam
    Fu, Yongzhu
    Chung, Sheng-Heng
    Zu, Chenxi
    Su, Yu-Sheng
    CHEMICAL REVIEWS, 2014, 114 (23) : 11751 - 11787
  • [27] Carbon-Coated Yttria Hollow Spheres as Both Sulfur Immobilizer and Catalyst of Polysulfides Conversion in Lithium-Sulfur Batteries
    Zeng, Peng
    Chen, Manfang
    Luo, Jing
    Liu, Hong
    Li, Yongfang
    Peng, Jiao
    Li, Jinye
    Yu, Hao
    Luo, Zhigao
    Shu, Hongbo
    Miao, Changqing
    Chen, Gairong
    Wang, Xianyou
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (45) : 42104 - 42113
  • [28] Single-atom cobalt encapsulated in carbon nanotubes as an effective catalyst for enhancing sulfur conversion in lithium-sulfur batteries
    Samawi, Khalida Abaid
    Salman, Ekhlas Abd-Alkuder
    Hasan, Hiba Ali
    Mahmoud, HassabAlla M. A.
    Mohealdeen, Sura Mohammad
    Abdulkareem-Alsultan, G.
    Abdulmalek, Emilia
    Nassar, Maadh Fawzi
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2024, 9 (05) : 464 - 476
  • [29] A novel modified sulfur cathode to facilitate the adsorption and conversion of polysulfides in lithium-sulfur batteries
    Wu, Xiaochen
    Yang, Qi
    Huang, Wenlong
    Na, Ren
    Yu, Yu
    Liu, Huitian
    Liu, Xu
    Liu, Yuansheng
    Cao, Yuhao
    Shan, Zhongqiang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (05) : 1201 - 1210
  • [30] Stabilizing Lithium-Sulfur Batteries through Control of Sulfur Aggregation and Polysulfide Dissolution
    Liu, Qian
    Zhang, Jianhua
    He, Shu-Ang
    Zou, Rujia
    Xu, Chaoting
    Cui, Zhe
    Huang, Xiaojuan
    Guan, Guoqiang
    Zhang, Wenlong
    Xu, Kaibing
    Hu, Junqing
    SMALL, 2018, 14 (20)