Wind-induced fragility analysis of a transmission tower based on multi-source monitoring data and deep learning methods

被引:0
|
作者
Zhang, Wen-Sheng [1 ]
Fu, Xing [1 ]
Li, Hong-Nan [1 ]
Zhu, Deng-Jie [2 ]
机构
[1] Dalian Univ Technol, Sch Infrastruct Engn, Dalian 116023, Peoples R China
[2] China Southern Power Grid Co Ltd, Elect Power Res Inst, Guangzhou 510000, Peoples R China
关键词
Transmission tower; Wind load; Deep learning methods; Multi-source monitoring data; Fragility assessment; SEISMIC RESPONSE; LINE SYSTEM; OPTIMIZATION; NETWORKS;
D O I
10.1016/j.jweia.2024.105834
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Structural health monitoring (SHM) technology can provide useful data for the assessment of the wind-resistant capacity of a transmission tower. However, most studies on wind-induced fragility assessment are based on a significant number of simulations. In this context, a wind-induced fragility assessment framework for a transmission tower is proposed based on multi-source monitoring data and deep learning methods. The framework consists of three main steps. First, methods for processing missing data and denoising the monitoring data are developed. Subsequently, a surrogate model of structural dynamic response under wind field data input is established using long short-term memory (LSTM) networks, and the optimal model hyperparameters are obtained by Bayesian optimization. Finally, wind field data with a uniform distribution of wind speed intensities are generated, and the structural dynamic responses are supplemented by surrogate model prediction. Fragility curves are generated under a variety of wind directions. The proposed framework was validated, and its applicability and efficiency were demonstrated using monitoring data from a real transmission tower. The results indicated that wind direction has a significant influence on fragility curves. The proposed framework is capable of efficiently expanding the database of wind-induced dynamic responses and realizing more reliable and rapid fragility assessments.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A deep learning model based on multi-source data for daily tourist volume forecasting
    Han, Wenjie
    Li, Yong
    Li, Yunpeng
    Huang, Tao
    CURRENT ISSUES IN TOURISM, 2024, 27 (05) : 768 - 786
  • [22] Hybrid Methods' Integration for Remote Sensing Monitoring and Process Analysis of Dust Storm Based on Multi-Source Data
    Wang, Yanjiao
    Tang, Jiakui
    Zhang, Zili
    Wang, Wuhua
    Wang, Jiru
    Wang, Zhao
    ATMOSPHERE, 2023, 14 (01)
  • [23] Optical Fiber Sensing System for Online Monitoring Wind-induced Vibration on Power Transmission Tower Survey
    Nan, Yinggang
    Xie, Wenping
    Min, Li
    Cai, Shunshuo
    Chen, Xiaoyong
    Guo, Tuan
    2018 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2018,
  • [24] Monitoring marine pollution for carbon neutrality through a deep learning method with multi-source data fusion
    Wang, Bin
    Hua, Lijuan
    Mei, Huan
    Kang, Yanyan
    Zhao, Ning
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2023, 11
  • [25] A deep learning framework for lightning forecasting with multi-source spatiotemporal data
    Geng, Yangli-Ao
    Li, Qingyong
    Lin, Tianyang
    Yao, Wen
    Xu, Liangtao
    Zheng, Dong
    Zhou, Xinyuan
    Zheng, Liming
    Lyu, Weitao
    Zhang, Yijun
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2021, 147 (741) : 4048 - 4062
  • [26] Multi-source data fusion using deep learning for smart refrigerators
    Zhang, Weishan
    Zhang, Yuanjie
    Zhai, Jia
    Zhao, Dehai
    Xu, Liang
    Zhou, Jiehan
    Li, Zhongwei
    Yang, Su
    COMPUTERS IN INDUSTRY, 2018, 95 : 15 - 21
  • [27] Multi-source data integration for soil mapping using deep learning
    Wadoux, Alexandre M. J-C
    Padarian, Jose
    Minasny, Budiman
    SOIL, 2019, 5 (01) : 107 - 119
  • [28] Wind-Induced Response Analysis of the Transmission Tower-Line System Considering the Joint Effect
    Li, Jia-Xiang
    Zhang, Chao
    Fu, Xing
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024, 24 (22)
  • [29] Mangrove monitoring and extraction based on multi-source remote sensing data: a deep learning method based on SAR and optical image fusion
    Yiheng Xie
    Xiaoping Rui
    Yarong Zou
    Heng Tang
    Ninglei Ouyang
    Acta Oceanologica Sinica, 2024, 43 (9) : 110 - 121
  • [30] Mangrove monitoring and extraction based on multi-source remote sensing data: a deep learning method based on SAR and optical image fusion
    Yiheng Xie
    Xiaoping Rui
    Yarong Zou
    Heng Tang
    Ninglei Ouyang
    Acta Oceanologica Sinica, 2024, 43 (09) : 110 - 121