Self-Supervised Image Local Forgery Detection by JPEG Compression Trace

被引:0
|
作者
Bi, Xiuli [1 ]
Yan, Wuqing [1 ]
Liu, Bo [1 ]
Xiao, Bin [1 ]
Li, Weisheng [1 ]
Gao, Xinbo [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Dept Comp Sci & Technol, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
DETECTION ALGORITHM; OBJECT REMOVAL; CNN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For image local forgery detection, the existing methods require a large amount of labeled data for training, and most of them cannot detect multiple types of forgery simultaneously. In this paper, we firstly analyzed the JPEG compression traces which are mainly caused by different JPEG compression chains, and designed a trace extractor to learn such traces. Then, we utilized the trace extractor as the backbone and trained self-supervised to strengthen the discrimination ability of learned traces. With its benefits, regions with different JPEG compression chains can easily be distinguished within a forged image. Furthermore, our method does not rely on a large amount of training data, and even does not require any forged images for training. Experiments show that the proposed method can detect image local forgery on different datasets without re-training, and keep stable performance over various types of image local forgery.
引用
收藏
页码:232 / 240
页数:9
相关论文
共 50 条
  • [41] Deep Self-Supervised Hyperspectral Image Reconstruction
    Liu, Zhe
    Han, Xian-Hua
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (03)
  • [42] SSH: A Self-Supervised Framework for Image Harmonization
    Jiang, Yifan
    Zhang, He
    Zhang, Jianming
    Wang, Yilin
    Lin, Zhe
    Sunkavalli, Kalyan
    Chen, Simon
    Amirghodsi, Sohrab
    Kong, Sarah
    Wang, Zhangyang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4812 - 4821
  • [43] Self-supervised Learning for Sonar Image Classification
    Preciado-Grijalva, Alan
    Wehbe, Bilal
    Firvida, Miguel Bande
    Valdenegro-Toro, Matias
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1498 - 1507
  • [44] Investigating self-supervised image denoising with denaturation
    Waida, Hiroki
    Yamazaki, Kimihiro
    Tokuhisa, Atsushi
    Wada, Mutsuyo
    Wada, Yuichiro
    NEURAL NETWORKS, 2025, 184
  • [45] A Self-Supervised CNN for Image Watermark Removal
    Tian, Chunwei
    Zheng, Menghua
    Jiao, Tiancai
    Zuo, Wangmeng
    Zhang, Yanning
    Lin, Chia-Wen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 7566 - 7576
  • [46] Leveraging Self-supervised Denoising for Image Segmentation
    Prakash, Mangal
    Buchholz, Tim-Oliver
    Lalit, Manan
    Tomancak, Pavel
    Jug, Florian
    Krull, Alexander
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 428 - 432
  • [47] SELF-SUPERVISED REMOTE SENSING IMAGE RETRIEVAL
    Walter, Kane
    Gibson, Matthew J.
    Sowmya, Arcot
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1683 - 1686
  • [48] Self-supervised Learning for Astronomical Image Classification
    Martinazzo, Ana
    Espadoto, Mateus
    Hirata, Nina S. T.
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4176 - 4182
  • [49] Pathological Image Contrastive Self-supervised Learning
    Qin, Wenkang
    Jiang, Shan
    Luo, Lin
    RESOURCE-EFFICIENT MEDICAL IMAGE ANALYSIS, REMIA 2022, 2022, 13543 : 85 - 94
  • [50] Self-Supervised Learning for Industrial Image Anomaly Detection by Simulating Anomalous Samples
    Pei, Mingjing
    Liu, Ningzhong
    Zhao, Bing
    Sun, Han
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)