Communication-Efficient Personalized Federated Edge Learning for Massive MIMO CSI Feedback

被引:2
|
作者
Cui, Yiming [1 ]
Guo, Jiajia [1 ]
Wen, Chao-Kai [2 ]
Jin, Shi [1 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 80424, Taiwan
基金
中国国家自然科学基金;
关键词
Training; Correlation; Downlink; Servers; Data privacy; Antenna arrays; Uplink; Massive MIMO; CSI feedback; federated edge learning; neural network quantization; personalization; CHANNEL RECIPROCITY;
D O I
10.1109/TWC.2023.3339824
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning (DL)-based channel state information (CSI) feedback has garnered significant research attention in recent years. However, previous research has overlooked the potential privacy disclosure problem caused by transmitting CSI datasets during the training process. In this study, we introduce a federated edge learning (FEEL)-based training framework for DL-based CSI feedback. This approach differs from the conventional centralized learning (CL)-based framework, where the CSI datasets are collected at the base station (BS) before training. Instead, each user equipment (UE) trains a local autoencoder network and exchanges model parameters with the BS. This approach provides better protection for data privacy compared to CL. To further reduce communication overhead in FEEL, we quantize the uplink and downlink model transmission into different bits based on their influence on feedback performance. Additionally, since the heterogeneity of CSI datasets among different UEs can degrade the performance of the FEEL-based framework, we introduce a personalization strategy to enhance feedback performance. This strategy allows for local fine-tuning to adapt the global model to the channel characteristics of each UE. Simulation results indicate that the proposed personalized FEEL-based training framework can significantly improve the performance of DL-based CSI feedback while reducing communication overhead.
引用
收藏
页码:7362 / 7375
页数:14
相关论文
共 50 条
  • [1] Communication-Efficient Federated Learning For Massive MIMO Systems
    Mu, Yuchen
    Garg, Navneet
    Ratnarajah, Tharmalingam
    [J]. 2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 578 - 583
  • [2] LotteryFL: Empower Edge Intelligence with Personalized and Communication-Efficient Federated Learning
    Li, Ang
    Sun, Jingwei
    Wang, Binghui
    Duan, Lin
    Li, Sicheng
    Chen, Yiran
    Li, Hai
    [J]. 2021 ACM/IEEE 6TH SYMPOSIUM ON EDGE COMPUTING (SEC 2021), 2021, : 68 - 79
  • [3] Communication-Efficient Personalized Federated Meta-Learning in Edge Networks
    Yu, Feng
    Lin, Hui
    Wang, Xiaoding
    Garg, Sahil
    Kaddoum, Georges
    Singh, Satinder
    Hassan, Mohammad Mehedi
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (02): : 1558 - 1571
  • [4] Communication-Efficient Personalized Federated Edge Learning for Decentralized Sensing in ISAC
    Zhu, Yonghui
    Zhang, Ronghui
    Cui, Yuanhao
    Wu, Sheng
    Jiang, Chunxiao
    Jing, Xiaojun
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 207 - 212
  • [5] Communication-Efficient and Personalized Federated Lottery Ticket Learning
    Seo, Sejin
    Ko, Seung-Woo
    Park, Jihong
    Kim, Seong-Lyun
    Bennis, Mehdi
    [J]. SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 581 - 585
  • [6] Communication-efficient and Scalable Decentralized Federated Edge Learning
    Yapp, Austine Zong Han
    Koh, Hong Soo Nicholas
    Lai, Yan Ting
    Kang, Jiawen
    Li, Xuandi
    Ng, Jer Shyuan
    Jiang, Hongchao
    Lim, Wei Yang Bryan
    Xiong, Zehui
    Niyato, Dusit
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 5032 - 5035
  • [7] Communication-efficient federated learning via personalized filter pruning
    Min, Qi
    Luo, Fei
    Dong, Wenbo
    Gu, Chunhua
    Ding, Weichao
    [J]. INFORMATION SCIENCES, 2024, 678
  • [8] Communication-Efficient Personalized Federated Learning With Privacy-Preserving
    Wang, Qian
    Chen, Siguang
    Wu, Meng
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2374 - 2388
  • [9] Communication-efficient federated learning
    Chen, Mingzhe
    Shlezinger, Nir
    Poor, H. Vincent
    Eldar, Yonina C.
    Cui, Shuguang
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (17)
  • [10] Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT
    Mills, Jed
    Hu, Jia
    Min, Geyong
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07): : 5986 - 5994