Numerical comparison of generalized Newton-type methods and the extragradient algorithm for the nonlinear complementarity problem

被引:0
|
作者
Arenas-Aparicio, Favian [1 ]
Zambrano, Diego, V [1 ]
机构
[1] Univ Cauca, Dept Matemat, Popayan, Colombia
关键词
Complementarity; Newtons's method; orthogonal projections;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we carry out a numerical comparison of two generalized Newton-type methods, which use the minimum complementarity and Fisher-Burmeister functions, respectively, and a method that uses projections called the extragradient algorithm. Since the nonlinear complementarity problem is of great interest to many researchers due to its numerous applications in Engineering and Physics, we present a comparative numerical study that allows choosing one of the methods according to the need.
引用
收藏
页码:160 / 171
页数:12
相关论文
共 50 条
  • [41] Generalized self-concordant functions: a recipe for Newton-type methods
    Sun, Tianxiao
    Quoc Tran-Dinh
    [J]. MATHEMATICAL PROGRAMMING, 2019, 178 (1-2) : 145 - 213
  • [42] Newton-Type Methods on Generalized Banach Spaces and Applications in Fractional Calculus
    Anastassiou, George A.
    Argyros, Ioannis K.
    [J]. ALGORITHMS, 2015, 8 (04): : 832 - 849
  • [43] Local Attractors of Newton-Type Methods for Constrained Equations and Complementarity Problems with Nonisolated Solutions
    Fischer, Andreas
    Izmailov, Alexey F.
    Solodov, Mikhail V.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 180 (01) : 140 - 169
  • [44] Local Attractors of Newton-Type Methods for Constrained Equations and Complementarity Problems with Nonisolated Solutions
    Andreas Fischer
    Alexey F. Izmailov
    Mikhail V. Solodov
    [J]. Journal of Optimization Theory and Applications, 2019, 180 : 140 - 169
  • [45] A generalized proximal point algorithm for the nonlinear complementarity problem
    Burachik, RS
    Iusem, AN
    [J]. RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1999, 33 (04): : 447 - 479
  • [46] A quadratically convergent algorithm for the generalized nonlinear complementarity problem
    Chen, Kaixun
    [J]. INFORMATION SCIENCE AND MANAGEMENT ENGINEERING, VOLS 1-3, 2014, 46 : 1483 - 1489
  • [47] Symmetrical components estimation through nonrecursive Newton-type numerical algorithm
    Terzija, VV
    Markovic, D
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2003, 18 (02) : 359 - 363
  • [48] Critical solutions of nonlinear equations: local attraction for Newton-type methods
    Izmailov, A. F.
    Kurennoy, A. S.
    Solodov, M. V.
    [J]. MATHEMATICAL PROGRAMMING, 2018, 167 (02) : 355 - 379
  • [49] Newton-type methods for solving nonlinear equations on quadratic matrix groups
    Lopez, L
    Mastroserio, C
    Politi, T
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) : 357 - 368
  • [50] Critical solutions of nonlinear equations: local attraction for Newton-type methods
    A. F. Izmailov
    A. S. Kurennoy
    M. V. Solodov
    [J]. Mathematical Programming, 2018, 167 : 355 - 379